
(y)

q~OF

0' 4

DE E10v)1,]0

()I ;iiI F% VAI\

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

91 1 3 5?

0
AFIT/GCS/ENG/90D-10

DTIC
SELEOTEJAN 07 1991

THE DEVELOPMENT OF
A GRAPHICAL NOTATION FOR

THE FORMAL SPECIFICATION OF SOFTWARE

THESIS

Gene A. Place
Captain, USAF

AFIT/GCS/ENG/90D-10

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-10

THE DEVELOPMENT OF

A GRAPHICAL NOTATION FOR

THE FORMAL SPECIFICATION OF SOFTWARE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of TSAccesio

NTSMaster of Science (Computer Science) DTIC "TAI3 L,
U,.aninou .. ed i

By..........
Gene A. Plate, B.S. Di~ ibio

Captain, USAF AV1I(,',o.: .. 2

Decemer, 190ce

Approved for public release; distribution unlimited

Acknowledgments

Many individuals have contributed to the final results of this research. Fir'st, many

thanks go to my thesis advisor, Dr (Maj) Paul Bailor, for providing his boundless enthu-

siasm when it was needed, and for restricting his enthusiasm when it wasn't. Thanks also

go to my committee members, Dr (Maj) Patricia Lawlis and Dr (Maj) David Umphress

who took care of the "odd man out". Most in.,.-ortantly, sincerely thanks go to my wife,

Theresa, whose patience and support for this project were extraordinary.

Gene A. Place

Table of Contents

Page

I. Introduction 1-1

1.1 Problem Statement 1-7

1.2 Summary of Current Knowledge 1-8

1.3 Assumptions 1-8

1.4 Scope 1-8

1.5 Approach/Methodology 1-10

1.6 Organization 1-11

II. Survey of Current Literature 2-1

2.1 Formal Specification Methods and Visualization 2-1

2.2 Influence of Visual Technology on the Evolution of Language

Environments 2-2

2.3 Visualizing Program Designs Through PegaSys 2-3

2.4 Toward Software Metrics for Visual Programming 2-3

2.5 Mapping the Design Information Representation Terrain . . 2-4

2.6 Literature Search Summary 2-5

III. Objectives for a Graphical Specification Language 3-1

IV. A Graphical Representation of the SF Specification Language 4-1

4.1 Decomposition of SF 1-1

4.1.1 Decomposition Method 4-1

4.1.2 SF Decomposition 4-4

4.1.3 Why Stop Here? 4-6

4.2 Development of a Graphical Represeutation for SF 4-7

iii

Page

4.2.1 Considerations in Graphical Representation Develop-

ment 4-7

4.2.2 Language Foundations 4-8

4.2.3 Language Development 4-8

4.3 Graphical Language Syntax 4-11

4.4 Library Control System Example 4-13

4.5 Elevator Control System Example 4-28

4.6 Conclusions from the Development of the Graphical SF Repre-

sentation 4-28

V. A Graphical Representation of the Refine Specification Language . . . 5-1

5.1 Decomposition of Refine 5-2

5.1.1 Decomposition Method 5-2

5.1.2 Data Type Identification 5-3

5.1.3 Refine Operation Identification and Categorization 5-6

5.2 The Development of a Graphical Representation'for Refine 5-14

5.2.1 A Foundation for the Graphical Language 5-14

5.2.2 Graphical Language Development 5-16

5.3 Graphical Language Syntax 5-34

5.4 Examples Using the Graphical Specification Language5-35

5.4.1 Library Control System Example 5-36

5.5 Graphical Specification of the Elevator Control System . . . 5-45

5.5.1 The Do-Elevator Function 5-47

5.5.2 The Handle-Events Function 5-48

5.5.3 The Check-State Function 5-48

5.6 The Graphical Specification anpg.. ivronn.t . 5-48

5.7 Assessment of the Graphical Specification Language 5-56

5.7.1 Abundant Use of Perceptual Coding of Information 5-57

iv

Page

5.7.2 Restrict Users to Easily Understood Objects 5-58

5.7.3 Graphical Specifications that Differ Conceptually Should

Also Differ Visually 5-59

5.7.4 Mechanisms to Facilitate Data Abstraction 5-59

5.7.5 Allow Easy and Accurate Revision of Specifications 5-60

5.7.6 Mechanisms to Facilitate and Encourage Software Com-

ponent Reuse 5-61

5.7.7 Mechanisms to Facilitate Data Encapsulation 5-61

5.7.8 Overall Language Assessment 5-62

VI. Conversion Heuristics for Existing Graphical Requirements Analysis/Specification

Notations .. 6-1

6.1 Dataflow Diagram Conversion 6-1

6.1.1 State Transition Diagram ConLversion 6-6

6.1.2 Entity Relationship Diagram Conversion 6-11

6.2 Assessment of Notation Conversion Heuristics 6-17

VII. Conclusions and Recommendations for Further Research 7-1

7.1 Summaxy 7-1

7.2 Conclusions 7-2

7.3 Recommendations 7-3

7.3.1 Graphical Specification Environment Implementation 7-3

7.3.2 Validation Metrics for Graphical Specification Systems 7-4

Appendix A. SF Speification for the Library Control System A-1

Appendix B. SF Specification for the Elevator Contiol System B-1

Appendix C. Graphical SF Specification of the Elevator Control Systcm C-1

Appendix D. Refine Primitive Operations Categorized by Operand Data Type

D-1

v

Page

Appendix E. Refine Primitive Operations Categorized by Operation Charac-

teristics ... E-1

Appendix F. Refine Specification for the Library Control System F-1

Appendix G. Graphical Specification for the Library Control System . G-i

Appendix H. Refine Specification for the Elevator System H-1

Appendix I. Graphical Specification of Elevator SystemI-1

Bibliography ... BIB-I

Vita .. VITA-1

vi

List of Figures

Figure Page

1.1. Growth in Demand for Software vs Growth in Employment 1-2

1.2. Waterfall Software Lifecycle Model 1-4

1.3. Program Transformation Software Lifecycle Model 1-5

1.4. Modified Program Transformation Lifecycle 1-9

3.1. Objectives for the Development of a Graphical Formal Specification Lan-

guage ... 3-6

4.1. Parse Tree Example 4-2

4.2. Modified Parse Tree Example 4-3

4.3. Partial Parse Tree for SF 4-4

4.4. Partial Parse Tree for SF 4-5

4.5. Graphical Specification Language Symbology 4-12

4.6. Partial Pa'se Tree for SF. 4-14

4.7. Segment Lev Parse Tree for SF Graphical Language 4-14

4.8. Segment Level Graphical Specification Representation 4-15

4.9. Event/Type Level Parse Tree for SF Graphical Language 4-15

4.10. Event/Type Level Graphical Specification Representation 4-16

4.11. Graphical Representation of Segment Level Library Specification . 4-17

4.12. SF Representation of Segment Level Library Specification 4-18

4.13. Graphical Representation of Transaction 1 in Titles Segment 4-20

4.14. SF Representation of Transaction 1 in Titles Segment 4-20

4.15. Graphical Representation of Transaction 2 in Titles Segment 4-22

4.16. SF Representation of Transaction 2 in Titles Segment 4-2.

4.17. Graphical Representation for Transaction 3 in Titles Segment 4-23

vii

Figure Page

4.18. SF Representation for Transaction 3 in Titles Segment 4-24

4.19. Graphical Representation of Check copy Event in Copies Segment . . . 4-25

4.20. SF Representation of Check copy Event in Copies Segment 4-25

4.21. Transaction 1 in Copies Segment 4-26

4.22. Remove copy Event in Copies Segment 4-26

4.23. Check in Event in Copies Segment 4-27

4.24. Check out Event in Copies Segment 4-27

5.1. Graphical Representations for Mathematical Operations 5-20

5.2. Graphical Representation of the Simple Assignment Operation 5-21

5.3. Graphical Representations for the Boolean Operations 5-22

5.4. Graphical Representations for Set Operations 5-24

5.5. Graphical Representations of Sequence Operations 5-25

5.6. Graphical Representations for Tuple Operations 5-27

5.7. Graphical Representations of Map and Binary Relation Operations . 5-29

5.8. Graphical Representations of the Object Destruction Operation 5-30

5.9. Graphical Representations of Start, Stop, Enumeration, and Print Oper-

ators 5-31

5.10. Graphical Representation of Data Types 5-33

5.11. Graphical Specification of the Add-Book Function 5-38

5.12. Refine Specification of the Add-Book Function 5-39

5.13. Graphical Specification of tLe Remove-Book Function 5-40

5.14. Refine Specification of the Remove-Book Function 5-41

5.15. Graphical Specification of the Check-Out-Book Function 5-43

5.16. Refine Specification of the Check-Out-Book Function 5-44

5.17. Graphical Specification of the Return-Book Function 5.46

5.18. Refine Specification of the Return-Book Function 5-47

5.19. Graphical Formulation of the Do-Elevator Function 5-49

viii

Figure Page

5.20. Graphical Formulation of the Handle-Events Function 5-50

5.21. Graphical Formulation of the Check-State Function 5-51

5.22. Architecture of Graphical Specification System 5-53

6.1. Example Data Flow Diagram 6-7

6.2. Graphical Specification of Example Data Flow Diagram 6-8

6.3. State Transition Diagram for Elevator System 6-11

6.4. Graphical Specification Notation for Elevator State Transition Diagram 6-12

6.5. Example Entity Relationship Diagram 6-14

C.1. Elevator Control System Segment Diagram C-2

C.2. Graphical Specification of Initialize elevator Event C-3

C.3. Graphical Specification of Activate elevator Event C-3

C.4. Graphical Specification of Enter halt Event C-4

C.5. Graphical Specification of Press button Event C-4

C.6. Graphical Specification of Add to agenda Event C-5

C.7. Graphical Specification of Process halt Event C-5

C.8. Graphical Specification of Passing sensor Event C-6

C.9. Graphical Specification of Stop elevator Event C-6

C.10.Graphical Specification of Reactivate elevator Event C-7

C.11.Graphical Specification of Idle elevator Event C-7

C.12.Graphical Specification of Move idle Event C-8

C.13.Graphical Specification of Update clock Event C-8

C.14.Graphical Specification of Open door Event C-9

C.15.Graphical Specification of Transaction 1 (Activate elevator) C-9

%.C6.Graphical Specification of Traniaction 2 (Add to agenda)0-10

C.17.Graphical Specification of lyansaction 3 (Move idle) C-10

C.18.Graphical Specification of Transaction 4 (Enter halt) C-11

ix

Figure Page

C.19.Graphical Specification of Transaction 5 (Process halt) C-11

C.20.Graphical Specification of Transaction 6 (Set in motion) C-12

C.21.Graphical Specification of Transaction 7 (Passing sensor) C-12

C.22.Graphical Specification of Transaction 8 (Idle elevator) C-13

G.1. Graphical Formulation of the Add-Book Function G-2

G.2. Graphical Formulation of the Remove-Book Function G-3

G.3. Graphical Formulation of the Check-Out-Book Function G-4

G.4. Graphical Formulation of the Add-Book-With-Title Function G-5

G.5. Graphical Formulation of the Add-User-With-Name Function G-6

G.6. Graphical Formulation of the Return-Book Function G-7

G.7. Graphical Formulation of the Books-by-Author Function G-8

G.8. Graphical Formulation of the Books-on-Subject Function G-9

G.9. Graphical Formulation of the Print-Book-Set Function G-10

G.10.Graphical Formulation of the Add-User Function G-11

G.11.Graphical Formulation of the Remove-User Function G-12

1.1. Graphical Formulation of the Do-Elevator Function 1-2

1.2. Graphical Formulation of the Find-Active-Elevators FunctionI.. 1-3

1.3. Graphical Formulation of the Find-Current-Events Function 1-4

1.4. Graphical Formulation of the Handle-Events Function 1-5

1.5. Graphical Formulation of the Handle-Dest-Pressed Function 1-6

1.6. Graphical Formulation of the Find-Elevator-with-Name Function. . . 1-7

1.7. Graphical Formulation of the Handle-Floor-Reached Function 1-8

1.8. Graphical Formulation of the Handle-Summons-Pressed Function . . 1-9

1.9. Graphical Formulation of th chdl-u os Fucton........11rl. ,.,, , Ia o m o o fr-h Schedule-Surmmnons Function 1-,

1.10. Graphical Formulation of the Schedule-Up-Summons Function I-11

1.11. Graphical Formulation of the Find-Up-Candidates Function 1-12

x

Figure Page
1.12. Graphical Formulation of the Find-Best-Up-Elevator Function..... 1-13

1.13. Graphical Formulation of the Find-Shortest-Schedule Function 1-14

1.14. Graphical Formulation of the Schedule-Down-Summons Function. . .. 1-15

1.15. Graphical Formulation of the Find-Dn-Candidates Function 1-16

1.16. Graphical Formulation of the Find-Best-Dn-Elevator Function 1-17

1.17. Graphical Formulation of the Handle-Alarm-Rung Function 1-18

1.18. Graphical Formulation of the Handle-Elevator-Reset Function 1-19

1.19. Graphical Formulation of the Check-State Function 1-20

1.20. Graphical Formulation of the Down-Reset Function 1-21

1.21. Graphical Formulation of the Down-to-Halt Function 1-22

1.22. Graphical Formulation of the Move-to-DStop Function 1-23

1.23. Graphical Formulation of the Move-Down Function 1-24

1.24. Graphical Formulation of the Add-Event Function 1-25

1.25. Graphical Formulation of the Down-to-Idle Function 1-26

1.26. Graphical Formulation of the Start-Up Function 1-27

1.27. Graphical Formulation of the Start-Down Function 1-28

1.28. Graphical Formulation of the Move-Up Function 1-29

1.29. Graphical Formulation of the Up-to-Idle Function 1-30

1.30. Graphical Formulation of the Up-to-Halt Function 1-31

1.31. Graphical Formulation of the Move-to-Upstop Function 1-32

1.32. Graphical Formulation of the UpReset Function 1-33

1.33. Graphical Formulation of the Remove-Old-Events Function 1-34

1.34. Graphical Formulation of the Increment-Clock Function 1-35

1.35. Graphical Formulation of the Display-System-State Function 1-36

1.36. Graphical Formulation of the Display-Elevator-Header Function 1-37

1.37. Graphical Formulation of the Display-Elevator-State Function 1-38

1.38. Graphical Formulation of the Display-Event-Header Function 1-39

xi

Figure Page

1.39. Graphical Formulation of the Display-Event-States Function 1-40

1.40. Graphical Formulation of the Add-Elevator Function 1-41

xii

AFIT/GCS/ENG/90D-1O

Abstract

The program transformation lifecycle model, proposed by Balzer in 1984, may hold

the key to the drTmaticl'ap in softWaie engineer productivity necessitated by the tremen-

dous growth in the world's demand for software. This leap in productivity is made possible

by the program transformation lifecycle's reliance on formal specifications rather than pro-

grams as the primary vehicle for the creation and maintenance of software systems. Because

formal specifications are concerned only with system behaviors and not implementation

details, formal specifications tend to present critical system characteristics much more con-

cisely than programs. The major disadvantage of using formal specifications in a software

development process, however, is that, because of their highly mathematical nature, formal

specifications tend to be very difficult to create, understand, and maintain for the average

software engineer or programmer.

This *ee develops a graphical formal specification language based on the Refine

wide spectrum language using a graph 'based iconic representation to present formal spec-

ifications in a format that is much easier to create and manipulate than the equivalent

textual formal specifications. The development of this graphical formal specification lan-

guage proceeds in two steps: th Refine language is first decomposed into its primitive data

types and operations, then iconi representations are developed for each of the primitive

data types and operations that h e been identified. In addition to the development of a

graphical formal specification lang age, this research also proposes a numbel of heuristics

to convert existing graphical prog1 im design notations, such as data flow diagrams, state

xiii

transition diagrams, and entity relationship diagrams, into graphical formal specification

syntax.

The architecture for a graphical formal specification environment is proposed in this

research that would support the creation and revision of formal specifications using only

their graphical representations. Such a graphical formal specification system is imple-

mentable using current graphical workstation environments, such as Sunview or X Win-

dows. In addition, although this graphical language is based on the Refine language, the

decomposition methods proposed in this research should facilitate the creation of graph-

ical formal specification languages based on any well defined textual formal specification

language.

xlv

THE DEVELOPMENT OF

A GRAPHICAL NOTATION FOR

THE FORMAL SPECIFICATION OF SOFTWARE

L Introduction

The waterfall lifecycle model, used to help manage the majority of Department of

Defense software development programs (22) and many commercial software development

efforts, is rapidly losing its usefulness as a software development tool. One reason is that

the waterfall model is unable to cope with the growing gap between the world's demand

for software and the number of people equipped to develop that software (Fig. 1.1)(17).

Unless a new software lifecycle model is developed to make programmers more productive,

the software community will not be able to develop the software needed to drive the world's

new industrial, information, and military computer systems.

Another growing deficiency of the waterfall model is the length of time required to

develop software systems under the model. A commercial software package typically takes

2-3 years to develop; real-time command and control systems take even longer, 5-7 years

or more. In today's rapidly changing business environment, a software developer bringing

a package to market may find an environment totally different from the one for which the

software was originally intended, rendering the sLftware obboleLe before it is even used.

This time lag in fielding software systems is even more critical in a military environment

where it is crucial to keep pace with a rapidly changing threat.

1-1

Growth in Software Demand vs

Growth in Employment
35

30 Demand

25 Employment

20

5

10

1987 1988 1989 1990 1991

Year

Figure 1.1. Growth in Demand for Software vs Growth in Employment

1-2

As if these reasons were not enough to justify the need for a new lifecycle model,

Barry Boehm makes another argument in terms of real money. "By 1995," Boehrn states,

a 20% increase in programmer productivity will result in approximately $90 billion in

savings for the software industry" (8:43).

Boehm points out one way to increase programmer productivity: reduce the number

of steps required to develop a prograim (8:45). The waterfall lifecycle model (Fig. 1.2)

requires six separate steps (tight if an optional prototyping phase is performed) to develop

a computer program (2:40). In 1985, Robert Balzer proposed the program transformation

lifecycle model (Fig. 1.3) as an alternative to the waterfall model (2). Balzer's trans-

formation model uses only six steps to produce a final software product, two fewer steps

than the lifecycle model, which by Boehms's argument should both increase programmer

productivity and reduce the development time. The transformation model achieves this

two step reduction by basing software development on the concept of formal specification

of software.

Formal specification is a highly precise, mathematical description of a software sys-

tem's behavior. Besides reducing the number of steps required to develop software, for-

mal specifications have several other advantages over traditional development approaches.

First, formal specifications allow the developer to mathematically verify that a program

does exactly what it is supposed to do, nothing more, nothing less. In traditional devel-

opment methods, the only method of validating the correctness of a program is through

exhaustive testing. Exhaustive testing, however, is all but impossible for any substantial

program; for example, a small program with only 50 IF/THEN statemn~its that is run on

a machine capable of executing 1 million instructions per second (ips) woald take just over

1-3

WOAMAL REOLARMENTS #OM
OREMES 4ALYS SPECIFICA VLDAIN SNCT

VALIDATION4 IL - -- PROTOTYPE

L~F~

F;A E LIFECYCLE ACYVIlY

NAME LIFECYCLE PRODUCT

Pieure 1.2. XWai(rfal1 Soffw~arp I,ifpcvrlp Modol

RttM.KSA1 OAL R0EV LENT

RFO.O.WENIS ,gU' IN1

ADVANTAGM

MATHEMATICALLY CORRECT PROGRAMS
NO VERIFICATION NECESSARY
REDUCED TESTING REWURSOMEN
MAINTENANCE PERFRMD ON brp'ECIFlCATIONS, NOT CODE

DISADVANTAGES-
FORMAL SPECIFICATIONS DIFFICULT TO UNDERSTAND CONSTRUCT
EXTENSIVE TRAINING NECESSARY TO USE FORM SPtCIFICATION TOOMS

IA LIFECYCI.EACTIVTY

NAME LIFECYCLEPRO4JCT

Figure 1.3. Program Transformation Software Lifecycle Model

35 years to exhaustively test (20 paths / 1,000,000 ips).

Another advantage of formal specification is its ability to identify missing or ambigu-

ous requirements early in the development cycle. Barry Boehm points out that the cost

of correcting errors late in the development cycle of a program can cost 100-150% more

than correcting those same errors early in the program development effort (7). This cost is

reflected both in the money required to bring a product to market and in the time requircd

to develop the product.

Formal specifications also allow software developers to concentrate on the functional-

ity of the program instead of the implementation details. This focus on functionality forces

the developer to fully specify subroutine interrelationships and program structure. This

rigorous specification in turn reduces the required program implementation and mainte-

nance efforts.

Formal specifications, however, are not the perfect solution to the software industry's

problems. Because of their highly mathematical nature, formal specifications tend to be

very difficult to understand (9). Since users typically cannot understand formal specifi-

cations, a danger exists of miscommunication between users and developers which could

result in the developers building a system that Ioes riot fulfill user requirements. This

lack of understandability also means that an individual requires a significant amount of

training before becoming proficient in specification methods.

There is also considerable discussion in academic circles about whether it is even

possible to specify all types of software. Specification experts have expressed doubts about

the formal specification of real-time and human interface systems: real-time systems be-

1-6

cause of their rigid time constraints and human interfaces because of the highly random

nature of events in those systems.

Finally, formal specification methods have only begun to be used on complex, "real

world" software projects. Until more information about the results of using formal speci-

Ication methods for large scale software systems development becomes available, software

managers will be hesitant to use these methods for commercial software development.

1.1 Problem Statement

Although the program transformation lifecycle holds great promise as a tool for

increasing programmer productivity and for decreasing program development time, the

document that serves as the basis of the transformation lifecycle, the formal specification,

suffers from a severe understandability problem. As Bustart, et al, state:

In order to communicate information clearly from one person to another each
concept involved must be presented several times over. Usually, a point is
first stated, then restated in a different way and then illustrated appropri-
ately When attempting to specify software, however, it is desirable to have a
much more precise way of stating what is required. In particular, if a specifica-
tion is given mathematically there is usually no redundancy in the information
it contains. As a consequence, formal specifications can be difficult to under-
stand. (9)

This research aims to create a graphical formal specification language that will im-

prove the readability and understandability of formal specifications while preserving the

numerous advantages of the program transformation lifecycle. This researh aisu duvel-

ops a set of heuristics to convert existing requirements analysis notations into graphical

1-7

specification syntax which facilitates the use of existing program design documentation. A

graphic representation of this research area is contained in Figure 1.4.

1.2 Summary of Current Knowledge

A survey of recent literature concerning formal specifications and graplical languages

is contained in Chapter 2 of this thesis.

1.3 Assumptions

The graphic language to be developed in this thesis will be based on the Refine

programming language. Refine is ideally suited for the formal specification of software

and is currently being used by Rome Air Development Center to develop the Knowledge

Based Software Assistant (12). Since Refine is already being used, any enhancements to

• ne language may be directly applicable to Air Force development projects.

A secondary reason for choosing Refine as the foundation for this thesis effort is that

Refine is a commercial product. Because Refine is commercial, it should be relatively easy

to obtain technical support if needed. The choice of Refine as a foundation is also an

attempt to ensure the broadest possible applicability for this research since Refine's com-

mercial nature virtually guarantees a much wider distribution than a comparable academic

product.

1.4 Scope

This research presents the desirable characteristics of a graphical language, a gram-

mar for the language, a translational grammar to convert a specificatiol, between its graph-

1-8

M00FTHES6 RESEARCH

a IUKUfIR

ADVANTAGES OF MODIFIED UIFECYCL
SPECIFICATIONS EASY TO UNDERSTAND AND CONSTRUCT
REDUCED TRAINING NECESSARY TO USE SPECIFICATION TOOLS
POSSIBILITY OF INCREASED UXER INTERACTIONIPARTICIPATION

DISADVANTAES:
INCREASED COMPUTATIONAL OVEIMWADUE TO SOPIISTICATED INTERFACE

FmAIJ tiFECYCLACTf
NAME UIICYCLEPROOUCT

Figure 1A4. Modified Program Transformation Lifecvcle

1-9

ical and Refine representations, and a preliminary assessment of the effectiveness of the

graphical language. No attempt is made to actually implement the graphical language

because of the time constraints on this thesis. However, all of the system independent

information necessary to implement this graphical language is provided.

Because no implementation is being attempted, no detailed assessment of the graph-

ical language is possible since users will not have "hands on" experience with the language.

A detailed user survey should be performed after the language implementation is complete

to determine the effectiveness of the graphical language, but this survey is beyond the

scope of this effort.

1.5 Approach/Methodology

This research effort attacks the problem of developing a graphical language for the

formal specification of software in three steps. The first step establishes a set of objectives

for such a graphical language. These objectives are based on current research in the areas

of graphic programming and design notations, perception and learning processes of soft-

ware professionals, and formal language theory. Information concerning existing graphic

notations guided the development of the graphical language by providing a foundation for

the development a new graphical language and by identifying the pitfalls associated with

the development of such a language. Research into the characteristics of the perception

and learning processes of software professionals is critical to this effe-t because this new

.. ; 1- e must be casy to lear, and use; gnorg:,abl , nfor ,"n; about the

perception and learning processes of these individuals could result in the development of

a language that is neither. Information concerning formal language theory is important

1-10

to ensure that the graphical language developed can be efficiently implemented using as

many traditional compiler techniques as possible.

The second step decomposes a formal specification language, called SF (5), into basic

classes of language constructs. A graphical language should use the minimum number of

symbols possible to represent the specification language because, just as the Chinese lan-

guage is unwielly because of the number of symbols it uses, a graphical language that is too

large will be difficult to understand and use. On the other hand, a graphical language that

uses too few symbols is very likely to be ambiguous, again reducing the understandability

of the language. Dividing the language into classes of constructs will make the design of

an effective graphic representation much easier because each class can then be represented

by a single symbol or a small set of closely related symbols.

The final step in this project designs a set of graphic symbols so that each set of

specification language constructs can be represented by a single symbol or a small number

of very similar symbols. This notation development phase will be guided by other pop-

ular graphic notations now used in software development in order to minimize the time

a user would require to transition from an existing development notation to this formal

specification notation.

1.6 Organization

This thesis is divided into seven chapters:

* Chapter 2 contains a survey of the current research related to this effort.

1-11

e Chapter 3 investigates the characteristics necessary for a graphical language to be an

effective communication tool for humans while remaining processable by computers.

o Chapter 4 decomposes a simple specification language called SF and constructs a

preliminary graphical specification language based on SF. The experience gained from

working with the SF language is then applied to working with a more sophisticated

specification language called Refine.

9 Chapter 5 decomposes the Refine language into sets of language constructs that

are representable by a graphical language and then proceeds to build a graphical

specification language built upon these constructs.

@ Chapter 6 discusses some of the issues associated with the conversion of existing

graphical programming notations into graphical specification syntax.

* Chapter 7 presents the conclusions of this research aid recomaendations for contin-

uing research in this area.

1-12

I. Survey of Current Literature

Balzer's program transformation lifecycle model is based on formal specification of

software, the process of using mathematical expressions to describe a software system.

Formal specification, however, is not a panacea for programmer productivity; the mathe-

matical expressions used in formal specification are very difficult to understand. In fact,

programmers frequently need special training in order to understand, use and create formal

specifications. This literature search will survey current efforts to enhance formal specifi-

cation languages with graphical interfaces that allow programmers to create and use these

languages more efficiently and effectively.

Because the design of graphical interfaces for formal specification languages is a

relatively new area of research, very little information about this research area exists.

Therefore, this literature search surveys sources containing information which could be

useful in the design of a graphical interface for a formal specification language.

2.1 Formal Specification Methods and Visualization

Berztiss (5:231-290) is one of the few researchers to use a graphical notation to

enhance the understandability of formal specifications. In his article, Berztiss presents SF,

a specification language of his own design. Using SF, Berztiss formally specifies a library

system, an elevator control system, and a text formatter in order to demonstrate the utility

of formal specifications in general and. SF in particular.

After he develops the framework for discussing formal specification methods, Berztiss

shows how graphic notations commonly used by programmers, such as data flow diagrams,

2-1

which depict the flow of information from one program routine to another, entity rela-

tionship diagrams, which depict the interrelationships between the information structures

being manipulated by the program, and state transition diagrams, which depict the move-

ment of a program from one state to another, can be used to develop formal specifications.

Berztiss concludes, however, that these programming notations will never serve as more

than supporting documentation for formal specifications. Berztiss takes this position be-

cause of the amount of supporting text, in the form of labels and additional notations,

necessary to make the graphic notations stand-alone documents.

2.2 Influence of Visual Technology on the Evolution of Language Environments

Ambler and Burnett (1:9-22) present a broad survey of visual programming envi-

ronments. Although the authors' survey does not discuss formal specification, the survey

is important in the development of a graphical notation for formal specifications because

the survey allows the reader to compare and contrast the d.fferent features of each envi-

ronment, enabling the reader to select those features that would enhance any particular

graphical notation.

Ambler and Burnett divide their survey into three areas, visual user interfaces, vi-

sual editing, and visual languages, and discuss the common characteristics of systems in

each area. Ambler and Burnett supplement this theoretical framework with descriptions

of over a dozen visual systems to show how these common characterstics manifest them-

selves in different environments. This comparison and contrast is valuable to this research

effort because it highlights the desirable and undesirable features of graphical design and

development environments.

2-2

2.3 Visualizing Program Designs Through PegaSys

While Ambler and Burnett present a broad survey of the visual programming envi-

-cnments, Moriconi and Hare (21:72-85) focus on one visual environment, PegaSys, and

lemonstrate the benefits of using graphic images to represent computer programs. Like

Ambler and Burnett, Moriconi and Hare do not address formal specification; nevertheless,

the authors' system implements some characteristics that would be highly desirable in a

g-aphic notation for a formal specification language.

One of the most important features of such a graphic notation is a simple but consis-

tent .Lotation for all program constructs. PegaSys' notation for its program constructs is an

excellent example of a sophisticated notation that retains the simplicity and consistency

necessary to make the notation understandable and usable by programmers with little

training. PegaSys also enables the programmer to view a program from several different

perspectives, such as showing the flow of information through the program or showing the

transition of the program through different states. This ability to display a program from

different perspectives is a powerful tool for increasing the understandability of graphic no-

tations since the ability enables the programmer to view a program from the perspective

most natural to him or her.

2.4 Toward Software Metrics for Visual Programming

While Ambler and Burnett and Moriconi and Hare present excellent descriptions of

a variety of visual systems implementing a vast number of features, neither pair makes

any attempt to establish the characteristics necessary for a "good" visual system. Glinert

(15:425-445) fills this void by proposing a rigorous mathematical framework for determin-

2-3

ing the effectiveness of a visual system. Such a framework is absolutely necessary if the

developers of a graphic notation are to evaluate a notation and improve that notation to

increase its effectiveness.

Since individuals naturally perceive structures in different ways, the probability of

developing a single metric for measuring graphic notations is very low. It is in this light

that Glinert proposes the definition for a metric for visual systems: "The key to making

the computing environment both accessible to the novice and appealing to the expert user,

is to maximize its coefficient of attraction while minimizing its coefficient of repulsion"

(15:426). Adhering to his definition, Glinert's evaluation method is based on enumerating

the features of a particular system, recording the reactions of a group of users to the

features, and then calculating a weighted composite score for the system based on these

reactions. After developing this evaluation method, Glinert applies the method to a variety

of visual systems, effectively conveying the relative strengths and weaknesses of each of the

systems.

2.5 Mapping the Design Information Representation Terrain

In order to construct a graphical notation for a formal specification language, one

must be able to decompose the language into its elementary parts so that each part can be

associated with a unique graphical symbol. One of the major obstacles, then, is deciding

how to decompose a particular language. Webster (26:8-23) addresses this problem by

invebtigating the conimon mect biiims ubed by specification languageb to reprebent program

design information. To clarify his descriptions of these mechanisms, Webster describes a

number of specification languages and points out the similarities and differences between

2-4

the mechanisms these languages use to encode design information.

Webster concludes his article by attempting to organize the specification languages

into "families" based on their relative characteristics. These families could be particularly

useful in the design of a graphic notations because one would like to design a notation that

is useful in a variety of applications; this family structure presents a useful structure for

planning and analyzing the portability of a particular notation.

2.6 Literature Search Summary

Although there has been relatively little research into graphical notations for for-

mal specification languages, this survey has shown that the tools do exist for designing

and constructing such a notation. Although Berztiss is prepared to restrict graphic nota-

tions to strictly supporting formal specifications, Ambler and Burnett and Moriconi and

Hare describe tools that could eliminate the problems that prompted Berztiss's restriction.

Webster offers a useful taxonomy for planning the portability of a new graphic notation.

Finally, after the notation is designed and implemented, Glinert proposes a methodology

to assess the effectiveness of the notation and to indicate the features of the notation that

require improvement.

This survey has attempted to synthesize the state-of-the-art in graphic notations

for formal specifications through an examination of the tools available in closely related

research areas. The articles surveyed have shown a wide variety of graphical notations

already implemented for conventional programming systems. The challenge now is to

modify these existing notations so that the notations can effectively represent a formal

2-5

specification, thereby enhancing the understandability and usability of formal speci-

fications and increasing programmer productivity.

2-6

III. Objectives for a Graphical Specification Language

Before beginning any project, it is vital to establish a set of requirements and objec-

tives for the project to ensure the high quality and usefulness of the final product. Tie

design of a graphical specification language is no exception. As stated in the introduction,

this language design effort has two important objectives:

" Devise a method of presenting specification information that is clear, concise, and

understandable by a variety of users.

" Devise a graphical specification environment that makes graphic formal specifications

easy to create and manipulate.

For ease of use, these two objectives shall be referred to as language clarity and language

utility respectively.

Using language clarity and utility as a foundation, it is now possible to further

refine these characteristics in order to establish a more concrete set of objectives to guide

the development of a graphical specification language. Fitter and Green (14) propose

a number of ways to improve the clarity of a graphical language. One suggestion is to

use "perceptual coding" whenever possible (14:257). Although they do not provide a

definition of perceptual coding, Fitter and Green do provide a number of examples, such

as color coding of electrical wires and terminals, and the various sounds associated with

telephone systems, i.e., dialing, ringing, and busy signals. Fitter and Green's point in

this suggestion is that programmers are taught early in their careers to use spatial cues,

such as indentation, double spacing, and capitalization, in their programs to make those

3-1

programs more understandable and readable; graphical languages offer an opportunity to

take this non-textual representation a step further through the use of pictures in addition

to text to represent computer instructions. Fitter and Green are emphasizing that it is not

the symbology that is important in making specifications understandable, but it is how

that symbology is presented and how the various symbols interact. Put simply, Fitter and

Green suggest using spatial coding and inter-symbolic rela~lonships as much as possible to

present information to the user.

Fitter and Green also suggest that restricting users to easily understood objects

increases the clarity of a graphical language. This point is intuitively appealing since the

addition of an obscure object to a specification would tend to obscure the meaning of the

entire specification.

Fitter and Green conclude their suggestions to improve language clarity with the

recommendation that "different programs should be pe-,cEptually as different as possible"

(14:259). This recommendation is also intuitively appealing for obvious reasons: consider

for a moment a traffic light that used only one light changing colors instead of three separate

lights and instead of using three widely separated colors, i.e., red, yellow, and green, this

hypothetical traffic light used red for stop, a reddish orange for go, and orange for yield.

This traffic light configuration would indeed cause widespread confusion because the three

symbols for radically different activities are very similar. The same situation would hold for

graphical specifications: similar representations for widely differing activities would cause

significant confusion and uncertainty among the individuals working with the specifications,

thus decreasing the individuals' productivity.

3-2

Davis and Keller (10) point out the importance of data abstraction in the clarity

of a graphical language. Data abstraction refers to the ability to represent a number of

operations or a complex data structure with a single named entity, typically a function,

procedure, or macro for operations and a record, array, or list for data structures. As

Davis and Keller state, "It is cumbeisome to deal with graphical programs consisting of

single very large graphs" (10:31).

Just as they did with language clarJ.. Fitter and Green make a couple of suggestions

for improving the utility of graphic langua .es. First, they suggest the need for a language

to provide mechanisms to "allow easy and accurate revision" of graphical specifications

(14:258). In other words, the I: rquage symbology must be modular enough that a graphic

editor can be constructed to mnipulate langu'ge constructs. Fitter and Green's second

suggestion is closely tied to their first: "reveal the underlying mechanisms and be responsive

to manipulation" (14:258). As with their first, this suggestion requires a level of mo'ularity

of the graphical specification language to accommodate easy manipulation. In addition,

however, both of these suggestions make demands of not only the graphical language but

also of the language's supporting environment, namely the need to provide an interactive

graphical editor capable of manipulating the graphical specification language.

Another feature that would greatly enhance the utility of a graphical specification

language is a mechanism that would facilitate or even encourage the reuse of existing

software components. One of the primary reasons for attempting to develop a graphical

specification language is to greatly increase programmer productivity. 'Ihere is no better

way to improve programmer productivity than to help the programmer to avoid performing

the work in the first place. This is the fundamental idea behind the idea of software

3-3

component reuse. A mechanism for facilitating such reuse would require graphical language

features that would allow the user to conveniently construct components which could be

reused in future projects. The mechanism would also require the language environment to

provide a "librarian" of sorts that would assist the user in cataloging and then retrieving

the software components. Ingalls, et al, (16) demonstrate the use of such a mechanism in

their graphical language Fabrik. In Fabrik the user constructs programs out of primitive

software components contained in "kits". Although the librarian in this case is a passive

filing system, Fabrik demonstrates the feasibility of software construction through the use

of kits.

One more utility enhancing feature would be some mechanism for supporting data

encapsulation. The term data encapsulation refers to the concept of combining a data

structure and its associated operations into one program structure. Popularized by object

oriented languages such as Smalltalk, data encapsulation provides the programmer with one

more tool to manage program complexity. The inclusion of a data encapsulation mechanism

in a graphical specification language along with mechanisms promoting software component

reuse would open the opportunity for programmers to construct domain specific "toolkits".

Once these toolkits are constructed, they could potentially be used by both programmers

and non-programmers for rapidly assembling more sophisticated components or even entire

specifications. Clearly, these mechanisms offer great potential for increasing programmer

productivity.

Although all of these objectives are desirable in a graphical specification language,

there may be cases where objectives conflict. In the case of such a conflict, the objectives as-

sociated with language clarity will take precedence over objectives associated with icu1,age

3-4

utility. As stated earlier, the most significant problem with the use of formal specifica-

tions is the lack of understandability of these specifications, In addition, understandability

affects not only the programmers and specifiers working with the specifications, but also

affects the customers who need assurances that the specifier and programmer are build-

ing what the customer actually needs. Language utility, oxi the other hand, affec+- only

the programmer. Powerful methods already exist for manipulating specifications in their

textual form, thereby reducing the need for providing graphical manipulation tools. This

subordination of language utility objectives, however, in no way establishes the graphical

specification language as a read-only system. The graphical specification language system

should possess powerful facilities for the creation and manipulation of graphical specifica-

tions. This prioritization does, however, allow for the rational, coherent, and consistent

resolution of any conflicts between objectives.

These objectives, then, constitute a framework within whicX the development of a

graphical specification language may proceed. To facilitate the evaluation of graphical

specification languages against these objectives, it is necessary to develop a more compact

form of presentation. A concise presentation of the objectives for a graphical specification

language grouped by their association with language clarity and utility is contained in

Figure 3.1.

3-5

Clarity of Language

- Abundant use of perceptual coding of information

- Restrict users to easily understood objects

- Graphical specifications that differ conceptually should also differ visually

- Mechanisms to facilitate data abstraction

* Utility of Language

- Allow easy and accurate revision of specifications

- Mechanisms to facilitate and encourage software component reuse

- Mechani..ins to facilitate data encapsulation

Figure 3.1. Objectives for the Development of a Graphical Formal Specification Language

3-6

IV. A Graphical Representation of the S5 Specification Language

SF is a simple language developed by Alfs Berztiss for the formal specification of

information-control systems (6). SF is based on the concepts of sets of elements and func-

tions for querying and manipulating those sets. Because of its simplicity and modularity,

SF is an ideal foundation for developing a portable graphical specification language. This

graphical language will bp developed in two separate steps: first, SF must be decomposed

into its basic constructs and mechanisms so that each of these essential language parts can

be represented by a unique graphical symbol; second, a set of graphical symbols must be

developed that is easy to use and understand while unambiguously representing the SF

language; and third, a mapping function between graphical symbols and language con-

structs must be developed so that an SF specification can be converted into its graphical

representation and vice versa.

4.1 Decomposition of SF

4.1.1 Decomposition Method In the world of conventional programming languages,

compilers are the predominant tool for the translation of a program from one language to

another. It would seem logical then to look to compiler theory for methods to aid in the

decomposition of specification languages.

One tool from compiler theory that is well suited to language decomposition is the

parse tree (13:532-533). In conventional language compilation, the compiler constructs

a parse tree of some source program and then uses that tree to construct a program

equivalent to the original in some destination language. In the same way, a parse tree can

4-1

partl

part2 part3

Figure 4.1. Parse Tree Example

be constructed for a particular specification language to aid in the identification of basic

language constructs and to assist in the translation between specification representations.

The parse tree for any particular language can be easily constructed from the Backus-

Naur Form (BNF) of the language's syntax. The BNF description of a language's syntax

consists of a series of statements of the general form:

< partl >::=< part2 >< part3 >

To construct a parse tree from a language's BNF description, start with the first BNF

statement in the description. Place the term at the left of the ::= symbol at the root of

the tree. Then place the terms at the right of the ::= symbol on branches descending from

the first term. For example, consider the BNF statement presented earlier:

< partl >::=< part2 >< part3 >

The parse tree in Figure 4.1 was derived from this statement using these tree construction

operations. Now suppose that this example language contains another BNF statement:

< part2 >::=< part4 >< part5 >< part6 >

New BNF statements are added to the parse tree by lociting the term at the left of the

4-2

partl

part2 part3

part4 part5 part6

Figure 4.2. Modified Parse Tree Example

symbol on the existing tree and the connecting the terms at the right of the symbol

below the left term. Figure 4.2 shows the parse tree including the new BNF statement.

Using parse trees as an aid in decomposing a specification language has several ad-

vantages. First, because the parse tree is based on the syntax of the specification language,

the parse tree contains all of the information necessary to recreate the specification that it

was generated from. If the graphical specification language is created by manipulating the

subtrees of .he parse tree, then the formal specification can be recreated from the graphical

specifiation by returning the parse tree to its original form and then traversing that tree.

This property meets the objective of being able to create a graphical specification out of a

text specification and vice versa.

Parse trees are also valuable aids in a language decomposition method because they

graphically illustrate the relationships between different language constructs. Decomposi-

tion using parse trees, then, becomes a matter of creating the parse tree for a particular

i&. U.6L:' .id tICIei btACLtlig bUi, dab p be bubtieeb leplebenting majul language conbtrucb.

The selection of the subtrees is based on the objectives for the graphical languages dis-

cussed earlier, on major language constructs described in language descriptions, and on

4-3

< Segment >

SEGMENT < Event - Part> ENDSEGMENT

< Segment - Id > < Typepart > < Event > < Responder >

I I I
< Id > < Type > < Transaction >

Figure 4.3. Partial Parse Tree for SF

the judgement of the language designer.

Using parse trees to decompose a specification language also aids the designer in

determining the levels of abstractin at which the user may choose to view a specification.

Parse trees aid this determination because of their graphic illustration of language construct

interrelationships. Specification abstraction using parse trees becomes simply a matter of

hiding subtrees until they are demanded by the user.

4.1.2 SF Decomposition As stated earlier, SF is a simple language designed for the

formal specification of software. Because of its simplicity, SF is an ideal language to use

for demonstrating the decomposition of a language using parse trees. As a starting point,

the root of the parse tree for the SF language is shown in Figure 4.3. The firsL major

SF construct that becomes apparent after looking at the parse tree, as well as language

references, is the segment. The segment is SF's primary mechanism for modularizing

software specifications. This modularity breaks the specification into pieces to make it

4-4

< Sig - Exp >

< State > (< Sig - NA :

ON OFF < Sig - Id > (< Arg - Part >

Figure 4.4. Partial Parse Tree for SF

easier to use by the specification developers and maintainers. Such modularity is also

necessary to make the graphica. 1,uguage easy to use. The segment, then, seems to be an

excellent construct to include in the graphical language.

Two levels below the segment in the parse tree are three more SF constructs that

are ideal candidates for inclusion into the graphical language: the type, the event, and

the transaction. The type is SF's data eniapsulation mechanism. The type also provides

a set of functions that can perform non-destructive inquiries on the data in the type.

The event is SF's mechanism for manipulating the data contained in the type. Finally,

the transaction is SF's mechanism for responding to the changes in internal and external

conditions represented by changes in the states of system signals, which will be described

later. All of these constructs further refine the specification modularity instituted by the

segment construct. Each of these constructs is well suited for inclusion into a graphical

language because each contributes to the initial objective of allowing the user to control

the amount of specification detail that is displayed at any time.

Figure 4.4 contains another partial parse tree. This tree shows the derivation of the

signal in the SF language. SF uses the signal to implement all interevent and intersegment

4-5

communication. Although this construct resides fairly deeply in SF's parse tree, the signal

is well suited for inclusion into a graphical language not because of its modularizing ca-

pabilities but because this construct explicitly defines communication between the various

constructs of a specification, thus making the specification easier to understand and to use.

The signal illustrates an important point in the use of parse trees as an aid in decom-

posing a language: the use of a parse tree by an individual unfamiliar with the language

being decomposed can result in the omission of vital language constructions. Segments,

types, events, and transactions can all be derived fairly easily from the SF parse tree

because their large subtrees indicate that they encapsulate substantial amounts of infor-

rmation. Signals, however, appear very close to the leaves of the SF parse tree. If the size

of the subtrce was the only criterion for selecting the essential paits of a language, signals

would likely be rejected as an essential language construct, but the signal is an invaluable

tool for explicitly defining inter-construct communications within the specification. The

point is that a parse tree can be a valuable aid to a designer who is at least familiar with

the language being decomposed.

4.1.3 Why Stop Here? The SF language contains many more features beyond the

five that were selected for graphical representation. A logical question would be "Why

stop the decomposition at this point when so much of the language remains?" The primary

reason is based on the limitations of human processing. This decomposition has produced

a number of essential language constructs that represent most of the SF language while

remaining small enough to be effectively understood and manipulated by humans.

A secondary reason for stopping the decomposition at this point relates back to the

4-6

objective of having the user control the amount of specification detail presented at any

time. This decomposition allows the user to select three levels of abstraction: the specifi-

cation level, which displays a number of segments; the segment level, which displays the

events, types, and transactions in the segment, and the event/type/transaction level which

contains the specification for the behavior of the appropriate construct. Too many levels

of abstraction may force the user to spend an inordinate amount of time controlling the

amount of detail being displayed, impacting the graphical language's ease of use. However,

as Glinert points out (15), individual learning and working styles differ, so the actual num-

ber of abstraction levels that are allowed must be based on the features of the language

being defined as well as the experience and judgement of the graphic,d language designer.

4.2 Development of a Graphical Representation for SF

4.2.1 Considerations in Graphical Representation Development The major objec-

tive in the design of this language has been to create a graphical language that is easy to

learn, understand, and use. Conventional software development methods now use a variety

of graphical notations to increase the understandability of conventional software designs.

Data flow diagrams, entity-relationship diagrams, and state transition diagrams seem to

be the most prevalent of these graphical notations (25). By using these popular notations

as a foundation for development, a graphical specification language can capitalize on the

existing familiarity with these notations to reduce the effort required to learn and use the

fnew language.

Another factor that should be kept in mind during the design of this graphical lan-

guage is the size of the set of symbols used in the language. This factor is driven almost

4-7

entirely by the results of the language decomposition, but another look at this critical

factor is well advised during the development of the language symbology. Using too few

symbols in the language can result in ambiguities that will make the language difficult for

humans to learn and difficult or impossible for computers to process. On the other hand,

using too many symbols in the language increases the language complexity which in turn

reduces language understandability and ease of use.

4.2.2 Language Foundations The development of this graphical language is based

on the previous decomposition of the SF specification language. The decomposition iden-

tified five essential SF language constructs: the segment, type, event, transaction, and

signal. In a brief review of the functions of these language constructs, the segment is SF's

specification modularizing mechanism. The type is SF's data encapsulation mechanism.

The event is SF's data manipulation mechanism. The signal is SF's interevent and in-

tersegment communication mechanism. Finally, the transaction is SF's signal response

mechanism.

4.2.3 Language Development With the SF decomposition complete and the graph-

ical language objectives established, the stage is now set to begin the development of a

graphical specification language based on SF. As stated earlier, the symbol selection for

this language will be guided by the existing notations used in data flow diagrams, entity

relationship diagrams, and state transition diagrams.

The segment is most closely related to a high level process in the data flow diagram

(DFD) notation. Although the DFD notation makes no formal distinction between high

level and low level processes, in practical use, a high level process represents a conglomer-

4-8

ation of a number of lower level processes whereas low level processes represent a single,

well-defined activity. A segment performs a function very similar to the high level process

in that it represents a conglomeration of a number of lower level specification functions. A

significant difference between the two, however, is that processes are capable of manipulat-

ing program information whereas segments have no such processing capability. In DFDs,

processes are represcnted by circles. Because of the segment's similarity to processes, a

symbol resembling the circle should be used, but because of the d;fferences between pro-

cesses and segments, the circle itself should not be used. Therefore, an ellipse shall be used

to represent the segment. To further distinguish segments apart from one another, a text

label shall be included inside the ellipse identifying individual segments. This text label

shall be the same as the segment identifier in the SF specification.

The type in the SF language is very similar to both the data store in DFDs and to

the entity in entity relationship diagrams (ERDs). Both data stores and entities are data

encapsulation mechanisms which cannot destroy or modify the information that they hold.

Both the data store (25:253) and the entity (20:30) are represented by rectangles in their

respective notations. Because of the close similarities between the type and the data store

and entity, the type shall also be represented by a rectangle. Like the segment, the type

shall also contain a type identifier inside the rectangle to assist in distinguishing between

individual types.

The event, the data manipulation mechanism in SF, is similar in purpose to the

low level process in DFDs as described earlier and to events in state transition diagrams

(STDs). The event in SF and the event in STDs both represent a change of conditions

within a system. Moreover, the event in SF also seems to be a close relative of the process

4-9

because both the SF event and the process represent mechanisms that actively modify data

structures. However, the SF event seems to be conceptually closer to the DFD process than

to a STD event since the SF event and the process both represent an active modification

of system conditions, where the STD event simply implies that some change in conditions

has taken place. Because of their conceptual similarities, the SF event shall be represented

by the same symbol as the process, a circle, in this graphical language. The circle shall

also contain an event identifier.

The transaction has no counterpart in any of the existing notations being used.

Because of its mission as a responder to internal and external conditions through the use

of signals, it occupies a unique position in the SF environment. As such, a unique symbol

should be used to designate the transaction construct. Because it is distinctive and easy

to draw, a diamond shall be used to represent the transaction. Although a diamond is

used to represent relations in ERDs, the difference in the use of the diamond in this

specification language will be sufficient enough that the danger of c, ,-fwion between the

two constructs will be minimal. In SF, transactions are also capable of time dependent

activities. Because transactions do not have individual identifiers in SF, the expression

used to activate the transaction based on a time constraint will be included within the

transaction diamond. When an SF transaction responds to a particular signal, it responds

by triggering a particular event or several events. To represent this feature in the graphical

language, an arrow originating from a transaction diamond and terminating at an event

shall designate that the event is triggered by the response of the transaction.

The signal's closest relative in the existing notations is the data flow in the DFD. Just

as the data flow represents the movement of information from one process to another, the

4-10

signal represents the movement of information from one segment to another or from one

event to another. Because of its close similarity in function to the data flow, the signal shall

use the same symbology as the data flow, an arrow originating from the sending construct

and terminating at the receiving construct. SF signals have identifiers, so arrows shall be

annotated with the signal's identifier. Signals in SF may also carry arguments, either typed

or untyped. If the argument is typed, then the convention of a rectangle shall be maintained

by placing a rectangle on the arrow and placing the argument names within the rectangle.

If the arguments are untyped, then a rounded rectangle shall be used in the same way.

Signals can take on Boolean values, i.e., true or false. Since transactions only respond when

a signal takes a particular value, a signal terminating at a transaction shall be annotated

with the proper value to illustrate the value to which the transaction reacts. Since signals

can be modified by both events and transactions, some method is required to designate the

state of the exiting signal. If the emerging signal's state is deterministic, i.e., the signal is

guaranteed to have a particular value when exiting an event or transaction, the signal shall

be annotated with the appropiiate value. If the signal's state is nondeterministic, i.e., the

signal's value can vary depending on system conditions, then no state annotation will be

included.

Diagrams of all of these constructs are contained in Figure 4.5.

4.3 Graphical Language Syntax

In conventional parse trees, the only terms in the tree that actually appear in the

specification are terminal terms, i.e., the terms that appear as the leaves of the parse

tree. The parse tree for this graphical language uses semi-terminals, terms which are not

4-11

EwMI

Type

Ui~yped pawnete

Stgal

0 Type impo- ny e i op diaram

Figure 4.5. Graphical Specification Language Symbology

4-12

terminals but may still appear in the specification. The reason for using these semi-terminal

terms is founded on allowing the user to control the amount of detail being displayed at

any time. As a result of endowing the user with this control, a term may be a terminal, i.e.,

none of the term's subtree is displayed, until the user demands more information about

the term. At this time, the term is no longer a terminal and disappears so that it can be

replaced by the structures in the term's subtrees.

The syntax of the graphical language is identical to the SF syntax, then, except that

the keywords for a particular SF construct are replaced by semi-terminals representing the

corresponding symbols in the graphical language. For example, Figure 4.6 contains the

parse tree of a typical SF segment. In an SF specification, the entire parse tree is always

present, thus allowing the user no control over the amount of information presented to him

or her. In the graphical language however, when the user initially "opened" a specification,

the user would be presented with only the segment level information, represented by the

parse tree in Figure 4.7 and the graphical symbology in Figure 4.8. If the user so desires, he

or she can then request more detailed information about the segment which would result

in the expanded parse tree in Figure 4.9 and the revised graphical symbology in Figure

4.10. In this way, the user can explicitly control the amount of detail displayed at any time

thus allowing him or her to understand a specification more easily and clearly by removing

all unnecessary information from the display.

,?., Library Control System Example

Up to this point, this research has discussed the SF-based graphical specification

language in fairly abstract terms. The conversion of an existing SF specification for a

4-13

SEMETEvent - Part > E NDSEGMFJNT

< Segment - Id > < Typepart > <<t <Responder >

<1(1>~~ < p><Transaction >

Figure 4.6. Partial Parse Tree for SF

< Segmert>

Segment-Id

Figure 4.7. Segment Level Parse Tree for SF Graphical Language

4-14

Segment-Id

Figure 4.8. Segment Level Graphical Specification Representation

(Segmet>

Segment-Id

Type-Padb Event-Part)

< Type)> Type >Event >

TI Type-I E] Type-2 0Eveut-Id Paiarn-Set

Param > Param >

jType-i In Type-2 OLI

Figure 4.9. Event/Type Level Parse Tree for SF GIraphical Language

Eveit-Id

Type-i F ZJ-

Figure 4.10. Event/Type Level Graphical Specification Representation

library control system (3) will now be demonstrated to illustrate the techniques involved

in the conversion as well as to highlight the advantages of a graphical representation over

a purely textual representation. In order to emphasize the advantages of graphical specifi-

cations, each graphical specification is accompanied by the portion of the SF specification

from which it was derived. The complete SF specification for the library control system is

contained in Appendix A.

The specification for the library control system contains two segments, Titles and

Copies. Each of these segments is represented by an oval with the segment name within tLe

oval. The Titles segment imports the signals Add-title, Drop-title, and Move-title from

the Copies segment; these intersegment signals are represented as arrows originating from

Copies and terminating at Titles. The Copies segment imports the Title type from Titles.

represented by an arrow originating at Titles, terminating at Copies, and marked with a

4-16

Author Borrower

~Addlthl

TITLES .. M0v,-tul, COPIES

Figure 4.11. Graphical Representation of Segment Level Library Specification

small square to distinguish the type import from an intersegment signal. Titles imports

a type Author which is implied to be predefined. This type import is represented by a

rectangle containing the type identifier, Author, and an arrow leading from the rectangle

to the Titles segment. Likewise, the Copies segment imports a supposedly predefined type

Borrower, an import represented in the same manner. A diagram of these segment-level

interactions and the corresponding SF specification are contained in Figures 4.11 and 4.12

respectively.

Even at this high level of specification, the graphical language reveals several basic

characteristics of this specification. Firbt, all interbegineit communications are imniedi-

ately apparent. These communications reveal intersegment dependencies which are ex-

tremely important for the specification maintainer to know so that lie or she can be aware

4-17

SEGMENT Titles;

IMPORTED SIGNALS Add-title, Drop-title, Move-title;

EXPORTED SIGNALS Catalog-copy;

IMPORTED TYPE Author ENDTYPE;

TYPE Title : T(SUBSETS:INCAT,HASBEEN);

SECONDARY SETS- Subject'area: Area;

FUNCTIONS- title-text : T -> Text;

authors : T -> Author-set;
subjects : T -> Ares-set;

ENDTYPE;

SEGMENT Copies;

IMPORTED SIGNALS Catalog-copy;

EXPORTED SIGNAL Drop-title, Move-title, Add'tite;

IMPORTED TYPE Title:T ENDTYPE;

IMPORTED TYPE Borrower:B ENDTYPE;

TYPE Copy : C;
FUNCTIONS- book-id: C -> T;

borrowed: C -> Boolean(false);

lat-out: C -> B(nil);
books'out: B -> Integer(O);

limit: -> Integer(O);

ENDTYPE;

Figure 4.12. SF Representation of Segment Level Library Specification

4-18

of any non-local side effects of a specification change. The graphical language also reveals

one possible error in this particular specification. Although it is possible to declare a type

as predefined in the SF language, Berztiss has chosen not to do so for the Author and

Borrower imported types. Technically, then, undefined types are being imported into the

specification segments. This possible error is made readily apparent by the presence of

non-predefined types outside of a segment.

Within the implemented graphical language, this top level diagram would be the first

diagram presented to the user. If the diagram was too large to fit within the screen area,

the user would have the ability to scroll the screen in order to view the entire top level

diagram. Now suppose that the user requested more detail for the Titles segment.

The Titles segment contains three transactions. Recall that these transactions are

represented by diamonds containing a time expression governing the time dependent behav-

iors of the transaction. The first transaction is always active, denoted by the @T-min.now

expression, and responds when the Add-title signal becomes ON. The Add-title signal

carries the untyped arguments newcopy and book, represented by a rounded rectangle

containing the argument identifiers. When the Add'title signal becomes ON, the trans-

action responds by activating the Add-title event, represented by an arrow pointing from

the transaction to the circle representing the Add-title event. After responding, the trans-

action changes the Add-title signal from ON to OFF, represented by an arrow exiting

the transaction annotated with OFF. Figures 4.13 and 4.14 contain the graphical and SF

specifications for this transaction.

Once the Add-title event is triggered, it causes a series of actions. First, the event

4-19

Addtkie newcop

~~(Pmin~~~~now)nf copydil~nwop~ok)O
PRMP(Ad'ite~ewon ,book)

ENDTextACTit S

Figure 4.1. SFphca Representation of Transaction 1 in Titles Segment

Transact4o20

checks to see if its preconditions hold. For Add-title, the precondition involves an inquiry

into the set Text. This inquiry is represented by an arrow leading from the rectangle

representing the type Text to the event. If the event's preconditions hold, then the event

modifies the book item in the Title type, represented by the arrow leading from the event

to the type. Finally, the event sets the Catalog-copy signal to ON and passes the untyped

newcopy and book arguments with the signal. This signal modification is represented by

an arrow leaving the event, annotated with ON and a rounded rectangle with the argument

identifiers.

The convention used throughout this graphical language for representing event/type

interactions is that an arrow leading from a type to an event represents a non-destructive

query of the type by the event. An arrow leading from the event to the type represents a

modification of the information contained by the type. A double headed arrow between the

type and the event represents both a non-destructive query and an information modification

by the event.

The second transaction works in much the same way as the first; Figures 4.15 and 4.16

contain the graphical and SF specifications for this transaction. The transaction is always

active, denoted by the @T-min.now annotation, and responds when the Drop-title signal

becomes ON. This construction is represented by a diamond containing the ©T-min.now

annotation with an arrow entering the diamond from the left side annotated with the signal

identifier, Drop-title, and the signal state which triggers a transaction response, ON. This

arrow also contains a rounded rectangle representing the untyped argument carried by the

signal, book. Another arrow exits the transaction diamond from the right. This arrow

is again annotated with the signal's identifier, Drop-title, and the signal's state upon

4-21

book

Droaplitle

N A HASBEEN

Figure 4.15. Graphical Representation of Transaction 2 in Titles Segment

(* Transaction 2 *
TRANSACTION;

(O(T-min.now) :ON(Drop-title(book))OFF:Drop-title(book);
ENDTRANSACTION;

Figure 4.163. SF Re-resentation of Transaction 2 in Titles Segment

4-22

Move'tiJe newcopy Move-ttle

newcopyo bbook

Calalog-c y ewcopy

INCAT 1 HASBEN

Figure 4.17. Graphical Representation for Transaction 3 in Titles Segment

emerging from the transaction, OFF.

The transaction responds to the Drop-title signal by activating the Drop title event.

The Drop-title event performs modifications to the INCAT and HASBEEN subsets of the

Title type. These modifications are represented by arrows pointing from the event to the

types being modified.

The diagram for the final transaction in Titles is constructed in precisely the same

manner as the construction of the diagrams for the previous transactions. The graphi-

cal and SF specifications for this final transaction are contained in Figure 4.17 and 4.18

respectively.

if the user requests more information about any event, type, transaction, or signai

displayed, the SF specification for that construction is displayed. As stated previously, no

attempt has been made to completely specify a system using a graphical language.

4-23

(* Transaction 3 *)
TRANSACTION;

c (T-min.now) :ON(Move'title(newcopy,book))OFF:
Reactivate(newcopy,book);

ENDTRANSACTION;

Figure 4.18. SF Representation for Transaction 3 in Titles Segment

The Copies segment uses the same techniques to construct the diagrams for its one

transaction. Copies, however, introduces the concept of external events, events which are

not triggered by any transaction. These events are constructed in exactly the same way as

other events. For example, Check-copy event inspects the Title type and two subsets of

that type, INCAT and HASBEEN. Check-copy also inspects two untyped arguments, new-

copy and book. After Check'copy performs its inspections, it sets the signals Catalog-copy,

Move-title, and Add-title to ON and passes the untyped parameters newcopy and book

with each of the signals. Each of the inspections is represented by an arrow leading from

the appropriate type symbol, rectangles for typed objects aud rounded rectangle for un-

typed objects, to the event performing the inspections. Each of the signals is represented

by an arrow exiting the event. Each of the arrows is annotated with the signal identifier

and the state of the exiting signal. Each arrow in this case also carries a rounded rect-

angle representing the untyped arguments carried by the signal. The graphical and SF

specifications for Check-copy are contained in Figure 4.19 and 4.20 respectively.

The diagrams for the other three independent events and the transaction in the

Copies segment are shown in Figures 4.21-4.24. The SF specifications for the events and

transaction are contained in Appendix A.

4-24

EVEN Chckcoy nwcoy ok)0A

memerAoo EHASBEEN) -

EVENovCtitlecnpwcopycbook))O);

not (member(book ,T))I ->

(Add-title(newcopy ,book))ON;
ENDEVENT;

Figure 4.20. SF Representation of Check copy Event in Copies Segment

4-25

m -ook off

Figure 4.21. Transaction 1 in Copies Segment

Figure 4.22. Remove copy Event in Copies Segment

book

Figure 4.23. Check in Event in Copies Segment

Figure 4.24. Check out Event in Copies Segment

4-27

4.5 Elevator Control System Example

The elevator control system problem (11) presents another opportunity to specify a

syst-m using this language. The full SF specification for the elevator control system is

contained in Appendix B. Although the elevator control system is slightly more complex

that the library control system, its graphical specification does not use any concepts not

already discussed during the specification of the library system. Therefore, the graphical

specifications for the elevator system will not be discussed here, but will be included in

Appendix C for the benefit of the reader.

4.6 Conclusions from the Development of the Graphical SF Representation

This chapter has developed a number of techniques to decompose a specification lan-

guage and to reconstitute the language in a graphical format. These techniques will provide

a valuable foundation for the work in the next chapter to create a graphical representation

of a far more complex specification language.

This chapter also demonstrated the large increase in specification clarity and under-

standability when the specification is expressed in a graphical notation rather than in a

purely textual format. Although the objectives associated with language utility were not

addressed in this chapter, the language clarity objectives of perceptual coding (the adja-

cent positioning of language symbols to represent sequential execution, restriction to easily

understood objects), visual differentiation of specifications, and data abstraction (composi-

tion of individual functions into specification segments), were all fulfilled by this relatively

simple graphical language. This simple graphical specification language, then, has shown

that it is possible to build a graphical language directly on a text-based specification lan-

4-28

guage and still meet the objectives initially established to ensure that the language truly

increases specification understandability.

The development of a preliminary graphical specification language, then, proved to

be a worthwhile effort because of the techniques that were developed and because the

effort demonstrated the possibility of satisfying the language clarity objectives. With the

development of tl:s simple graphical specification language complete, then, it is now poL-

sible tn begin the major task of this research: the development of a graphical specification

language based on the RefineTM specification language.

4-29

V. A Graphical Representation of the Refine Specification Language

Because of its simplicity, the SF language is ideally suited for use as a learning

tool for the formal specification of software as well as a preliminary foundation for a

graphical specification language. However, that same simplicity prevents SF from being

useful in the specification of nontrivial, real-world systems. The Refine language, a wide

spectrum software specification, design, and modeling language developed and marketed

by Reasoning Systems, Inc., was developed to specify just such systems (23). Refine is built

not only on sets as SF is, but also encompasses additional complex data structures such

as sequences and maps as well as objects, a special data structure that will be discussed

later in the chapter. These additional data structures make Refine a much more flexible

and powerful language, but this power and flexibility come at a price: increased language

complexity. Because Refine is more complex than SF, a graphical language based on Refine

will be more complex than one based on SF.

In addition to the objectives already established, a primary objective in the devel-

opment of a graphical language based on Refine is to keep the complexity of the graphical

language to a minimum in order to maintain the clarity and utility of the language. The

development of a graphical specification language based on Refine proceeds in the same

manner as the language development for SF. First, Refine is decomposed into a set of lan-

guage primitives. Second, a set of graphical symbols is developed to represent those Refine

priiives. Finally, the new graphical specification language is demonstrated by using it

to specify two example problems: a library control system and an elevator -ontrol system.

5-1

5.1 Decomposition of Refine

5.1.1 Decomposition Method The parse tree was the primary tool used to decom-

pose the SF language. The parse tree was used because it provided a convenient vehicle

for constructing a visual representation of the structure of the language and also provided

some visual clues about which language constructs are the primary constructs in the lan-

guage. The parse tree could also be used for the decomposition of Refine, but for a complex

language such as Refine, the explicit construction and evaluation of the parse tree for the

entire language would be overwhelming. A better way to approach the decomposition of

a complex language such as Refine is to use the implicitly defined parse tree contained in

the language documentation as a guide to an efficient language decomposition.

The reader might recall that one of the objectives in the development of this graphical

specification language was to provide some mechanism to support lata encapsulation, the

combination of a data structure and its associated operations into one program structure.

In order to provide data encapsulation, all language operations must be categorized by

the operands that those operations accept. If all of Refine's primitive data types could be

identified then all of Refine's primitive operations could be identified as well. This catego-

rization would not only provide a convenient method of identifying key Refine operations,

but would also provide a solid foundation from which to proceed with the implementation

of any data encapsulation mechanisms. Because the categorization of Refine operations by

their operand data types facilitates the completion of two tasks at the same time, it is the

method that will be used for the decomposition of the Refine language. To summarize,

then, the decomposition of Refine will be accomplished in two steps: first, all primitive

5-2

data types in Refine will be identified, and second, all of Refine's primitive operations will

be categorized by the data types of their operands.

5.1.2 Data Type Identification The Refine language implements a wide variety of

data types ranging from the very simple and obvious to the very sophisticated. This section

will identify each of the data types provided by the Refine language and will give a brief

descr:ption of each data type to provide the reader with a basic familiarity with the Refine

language.

The first three data types implemented by Refine are common tc almost all program-

ming languages, the number, the character, and the boolean. Tie number is provided by

Refine to accommodate any numeric operations. The number may take the form of either

an integer or a real. Refine also allows the user to construct numeric subranges to enhance

portability and readability. The character is simply a printable character. The boolean

is a boolean value which may have only the values of true and false. Both the character

and the boolean may be represented by either a variable or a literal. The literal in the

boolean's case is simply either the word "true" or "false". A character literal is somewhat

untraditionally represented by the characters "#\" followed by the literal character.

The symbol is provided by Refine to allow the user to manipulate information by

symbolic names. This data type is somewhat reminiscent of the use of enumerated data

types in Algol based languages. The symbol may be represented by either a variable or a

literal symbol, which is represented by the literal symbol preceded by an apostrophe, e.g.,

'symbol-name.

The set, sequence, and string are all Refine constructs that allow the manipulation

5-3

of groups of homogeneous entities. The set is an unordered collection of entities where no

two entities in the set are identical. The sequence is an ordered collection of entities where

two or more entities in the sequence may be identical. The string is simply a sequence of

characters. All three of these data types may be used in either variable or literal form.

The literal form for the set is a listing of the entities comprising the literal set separated

by commas and enclosed on either elLd by a set of braces, e.g., {member-1, member-2}.

The sequence uses the same representation except that it uses brackets instead of braces,

e.g., [member-i, member-2]. The string literal is represented by either the literal string

enclosed in double quotes, e.g., "string", or as a sequence of literal characters, e.g. [#\s,

#\t, #\r, #\i, #\n, #\g]. Clearly the former method of representation is superior to the

latter in terms of clarity and utility.

The tuple is Refine's construction for representing a collection of heterogeneous in-

formation. Quite similar to the record in Pascal, Modula-2, and Ada, or the structure in

C, the tuple allows the user to manipulate groups of widely diverse information types as a

unit, a feature which is extremely important in terms of both language clarity and utility.

The tuple can be used in either a variable or literal form. The literal form of the tuple

is a less-than sign followed by the literal representations of the tuple's data separated by

commas all followed by a greater-than sign, e.g., <"string", 1000, 'symbol, true>.

According the the Refine Users Guide, maps are "partial, unary functions from a

domain type D to a range type R" (23:128). The term partial function refers to the fact

that a map may be defined for all, some, or even none of the elements in its domain. Maps

are extremely useful for compactly representing and for facilitating point-wise definition

and manipulation of relationships between entities. As with other Refine data types, maps

5-4

and manipulation of relationships between entities. As with other RefineTM data types,

maps can be used in either a variable or literal form. The literal form of the map is the

character set "{I" followed by all literal map assignments separated by commas, followed

by the characters "J}", e.g., {I domain-element-I ---* range-element-1, domain-element-2 --

range-element-2 1}. A map can also be constructed to represent an n-ary relationship by

defining the range type as a tuple.

The binary relation is defined by RefineTM to be a set of paired entities. Whereas

maps are useful for finding out what entity if any has a relationship with an entity in

question, binary relations are useful for finding out whether a relationship exists between

two known entities. The binary relation can be used in either a variable or literal form.

The binary relation's literal form consists of the set notation enclosing a number of pairs

enclosed in less-than and greater signs and separated by commas, e.g., {<domain-1, range-

1>, <domain-2, range-2>}.

The final data type implemented by RefineTM ;s the object. The object is a Refine7' M

entity capable of storing heterogeneous information, like a tuple, but is also capable of

existing outside of the RefineTM construct that it was defined in. In other words, all other

RefineTM data types cease to exist once the function that the data type was defined in

is terminated. Objects, however, continue to exist even after their defining function has

been exited. This feature is extremely useful for creating persistant information structuies

that must be used throughout a RefineTM program or information structures that must be

shared between RefineT M programs. An object is maintained in the Refine'1M Knowledge

Base (22:185) and must be accessed through functions defined by RefineTM. Because

objects are maintained in the Knowledge Base, objects have no literal representation.

5-5

In summary, Refine provides a wide variety of data types to facilitate many diverse

information representation schemes. As a quick reference, then, the fundamental data

types are

* Numbers

* Characters

* Booleans

* Symbols

* Sets

* Sequences

* Strings

* Tuples

* Maps

e Binary Relations

* Objects

5.1.3 Refine Operation Identification and Categorization Now that the Refine data

types have been identified, it is now possible to categorize Refine operations according to

their operand data type in order to fully decompose the Refine language. This section is

divided into subsections by Refine data type. Each section then will identify and briefly

describe each operation associated with that particular data type. The Refine User's Guide

(23) is the major source of information for this section.

5-6

5.1.3.1 Numbers As stated before, the numbers data type in Refine includes

integers, real numbers, and integer subranges. Refine provides the four common number

functions, addition, subtraction, multiplication, and division, as well as integer division and

integer remainder, i.e. the modulo operation. Refine also provides the common relational

operators, greater than, greater than or equal to, less than, less than or equal to, and

equality. Finally, Refine provides an operation to convert an integer into a real number.

5.1.3.2 Characters The reader should recall that the character data type in

Refine consists of the alphanumeric characters as well as special printable system charac-

ters such as the backslash, caret, and so on. Refine provides relational operators for the

character data type. The relational operators include equality, greater than, greater than

or equal to, less than, and less than or equal to.

5.1.3.3 Booleans The Refine language provides the basic operations of first

order predicate logic as the primitive operations for the boolean data type. These op-

erations include negation, conjunction, disjunction, implication, universal quantification,

existential quantification, and equality. In addition to these basic operations, Refine also

provides ordered conjunction and ordered disjunction. The basic conjunction and disjunc-

tion operations operate on their operands in a nondeterministic order, i.e., the user has

no control over the order in which the operands are evaluated. In contrast, the ordered

conjunction and disjunction operations allow the user to specify a precise order in which

the operands will be evaluated. Finally, Refine provides a nondeterminstic choice operation

which returns an arbitrary element from a set of items satisfying a given set of predicates.

The nondeterministic choice operation is undefined if there are no items satisfying the set

5-7

of predicates.

5.1.3.4 Symbols Since symbols are simple labels used to increase the clarity of

the Refine language, they do not require a great number of operations to facilitate necessary

symbol operations. Indeed, Refine provides only two operations for symbol manipulation,

an operation to test for the equality of symbols and an operation to convert a symbol into

a string to facilitate more extensive manipulation of the symbol.

5.1.3.5 Sets The Refine language provides a set of primitive operations asso-

ciated with the mathematical concept of sets, size (cardinality), element addition, element

deletion, union, intersection, set difference, equality, and membership, as well as tests for

whether a set is empty and whether one set is a subset of another. In addition to these

basic operations, Refine also provides operations that are more conceptually advanced.

The filter operation returns the elements of a set, if any, that cause a specified predicate

be true. The set reduction operation applies a user specified operation on each element of

a set and returns the result, for example the operation reduce(+, {1, 2, 3}) would return

the value 6, i.e., 1 + 2 + 3. (23:88) Finally, Refine provides an operation to transform a

set into a sequence.

5.1.3.6 Sequences The reader might recall that a sequence is an ordered col-

lection of items where multiple occurrences of identical items is allowed. The Refine lan-

guage provides a large variety of operations for the sequence data type consummate with

the need not only to manage the elements of a sequence but also the order of those ele-

ments. Refine starts by implementing a group of basic operations closely related to several

5-8

set operations, size (in this case the length of a sequence), equail, arid membership as

well as a test for emptiness. Noting these similarities i opera tiorts between da ta. types will

become very important in the development of a graphic",l aii-aage. Refine then p~rovides

a number of operations to manage the ordtering of a sequencc. These operations include

returning the ni-th element, returning the first element, returning I he last clement, return-

ing a subsequence of a sequence, returning the subsequew e ftuloowii~g a specified position,

assigning the ni-th position of a sequence a value, inserting an element into '.be n-th posi-

tion, appending an element to a sequence, prepending an element to a, sequence, deleting

the n-th elenient of a sequence, reversing the order of a sveuence, dnid concatenating two

sequences. Furthermore, Refine provides filtering and reductioR Qpcratioius for sequences

akin to those provided for sets, the filtering operation. returfib Only those eliieents satis-

fying a specified predicate and the reductic~ii operation returns the result of applying a

spcc-ified operation to each clement in turn. Refine also provides operations for returning

the image of a sequence under a map, returning the domair, of a sequence, and returning

the range of a sequence. The operation for returning the image of a sequence under a map

ret uras a sequence containing the results of applying a specified map to each element of a

specified sequence in trrn. If the map fbi a particular elenteitt in the specified sequence

is undefined, then that result is not included in the sequence resalting from the image

operation. Tihe domain operation return&6 a set of intvgors repieseniiig the position indices

of the sequence that are defined. Foi example, if the sequence S is defined to be [apple,

orange, banaual, then domain(S) would retuirn { 1, 2. 3) since the first, second, and third

postions i S are defined. The range operations re' jrn. the tet uf elei-aents contained in a

6pecified fsequeace. Thus, range(S) would return { applie, orangt, banaa). Finally, Refine

defines two type coercion operations for the sequence data type, one operation to coerce

sequences to sets and the other to coerce sequences to maps.

5.1.3.7 Strings Since strings are defined as sequences of characters, all of

the operations defined for the sequence data type also apply to the string data type. In

addition, Refine defines a set of string comparison operations which allow the user to

alphabetically order strings. These comparison operators are greater than, greater than or

equal to, less than, and less than or equal to.

5.1.3.8 Tuples The tuple is Refine's mechanism for maintaining and manipu-

lating groups of heterogenous data. Because the types of the fields contained in any tuple

cannot be specified beforehand, it is impossible to define operations to manipulate the

contents of the tuple type; the operations on tuple contents are governed by the operations

defined on the contents' type. Refine's designers have realized this fact and have provided

two operations to facilitate the maintenance of tuple contents but not manipulation of

the tuple information. The first operation if the field retrieval operation, which allows

the user to either set or get the contents of a particular tuple field. Refine also provides

an equality operation which compares two tuples on a field by field basis. The equality

operation is only defined if both of the tuples in question have the same number of fields

and if corresponding fields in each tuple have the same data type.

5.1.3.9 Maps Maps represent a partial, unary relationship between two data

types (23:128). Onice a particuiar map is ebtablished, that map is then used by calling it

with some member of the map's domain type; after this call, the map will return the range

5-10

element associated with the domain element, if oLe exists. If there is no range element

associated with that particular domain element, then the map is undefined. Refine first

defines a number of very simple operations on the map data type: size (the number of

elements in the map's domain) and equality, as well as a test for map emptiness. Refine

also defines filter, image, domain, arid range operations for the map which closely resemble

the operations of the same name defined for the sequence data type. The filter operation

for the set and sequence returned a subset or subsequence respectively containing all of the

elements of the initial set or sequence ,atisfying a specified predicate. The filter operation

for maps extends this concept so that if a map is defined with a domain type of a set or

sequence and a range type of a boolean, the filter may be called with such a map and a

set or sequence as arguments; the result of this operation will be a subset or subsequence

which contains all of the elements of the initial set or sequence where the map of the

element is true. For example, if a map M was declared as {I apple -> true, orange ->

false, banana -> true 1) and set S was declared as {apple, orange, banana}, filter(M,S)

would return {apple, banana} since apple and banana are the only members of S whose

range elements in M are true. The image operation takes a map and a set or sequence as

arguments and returns a set or sequence containing the results of the application of the

map to each element in the set or sequence in turn. The domain operation returns the

set of all of the domain elements defined in a specified map. The range operation returns

the set of all of the range elements defined in a specified map. The closure operation and

composition operation allow the user to perform even more abstract manipulations of the

map data type. The closure operation requires a map where the domain and range types

are identical. The closure operation will then return the smallest subset of the domain

5-11

type such that the result of a map evaluation for any element in the set will also be an

element of the set. The composition op, ration allows the user to combine two maps so that

the result of a composition evaluation is equal to the evaluation of the first map which is

then evaluated by the second map. The composition operator is actually a representation

of the function composition operator in advanced algebra. Finally, Refine defines one type

coercion operation for the map type, an operation to coerce a map to a binary relation.

5.1.3.10 Binary Relations As stated previously, the map and the binary re-

lation data types are very closely related data types. While the map returns the range

element associated with a particular domain element, if one exists, the binary relation

simply returns whether a relationship between a particular domain element and range el-

ement exists. Because of their close similarity, maps and binary relations share a number

of common operations. The image, domain, range, closure, and composition operations

are all common to both the map and binary relation. As in the map, the image operation

accepts a set or sequence as an argument and returns a set or sequence containing the

results of the application of the binary relation to each and every element in the set or

sequence. The domain operation returns all of the domain elements defined in a particular

binary relation. The range operation likewise returns all of the range elements defined in

a particular binary relation. The closure operation returns the smallest subset of elements

such that the range element associated with any element in the set is also in the set. The

composition operation combines two binary relations to create a new binary relation where

the domain element of the new relation is the domain element of the first old relation and

the range element of the new relation is the range element of the second old relation. As

5-12

the reader can see, these operations perform similarly to their counterparts defined for the

map data type. Since the binary relation is defined to be a set of ordered pairs, all set

operations are also defined for the binary relation data type. In addition to all of these

shared operators, Refine defines two unique operators on the binary relation. The first is

a transitive closure operator. This operator returns the smallest set of ordered pairs such

that the existence of <x, y> and <y, z> in the set implies that <x, z> is also in that set.

Finally, Refine provides one type coercion operator for coercing a binary relation into a

map.

5.1.8.11 Objects Refine's definition of operations on the object data type is

primarily limited to the creation and destruction of objects (since objects are persistant

data types) and assignment and retrieval of object attributes. Refine defines other minor

object operations for the querying and manipulation of the object environment, but those

operations are beyond the scope of this effort. In practice, objects behave quite similarly to

tuples except that objects continue to exist beyond the scope of the function in which they

were defined. This fact will be used further in the development of the graphical language.

In this operation definition stage, however, the object operations which will be dealt with

are creation, destruction, attribute assignment, and attribute retrieval.

All major Refine operations have now been identified and associated with operand

data types. It is now possible to begin the constractiun of the graphical formal specifica-

tion language based on the Refine language. However, before concluding this section, it

would be quite beneficial to corstruct a concise listing of the operation categorization just

completed, since this information will be referenced frequently during the development of

5-13

the graphical language. A listing of the Refine operations, categorized by data type, is

contained in Appendix D.

5.2 The Development of a Graphical Representation for Refine

Now that the numerous pieces of the Refine language have been identified and cate-

gorized, it is now possible to proceed with the development of a frma graphical language

based on Refine.

5.2.1 A Foundation for the Graphical Language Davis and Keller (10) present a

graphical language framework which will be extrememly useful for the development of

this graphical specification language. Davis and Keller use directed graphs to represent

program actions. In their representation, the nodes of the graph represent action performed

by the program on data while the arcs of the graph represent the flow of information from

one information processing site to another. Davis and Keller make several arguments

supporting the use c,: dsta flow graphs as graphical languages. First, data flow graphs

enhance the understandability of a program by using "a simple data availability firing rule"

(10:26). The rule refers to the fact that the information processing function of a particular

node -cci rs only when all of the arguments for that particular node are present. Perhaps

the easkst way to visualize this firing .ule is to view individual pieces of information as

tohens flowing throughout a network of pipes. A node then is somewhat like a small

refinery in the midst of this network, accepting input as one form of data and delivering

output as another form of data. The data availability rule may then be perceived as the

refinery performing its data conversion only when tokens ax- present at every inlet of the

5-14

refinery. The refinery then destroys each of those tokens and places the appropriate new

tokens at its outlets. The new tokens then continue to make their way through the rest of

the network. Although perhaps difficult to grasp at first, thic data availability firing rule

greatly simplifies the graphic depiction of control flow in a computer program.

Davis and Keller's second argument for the use of data flow graphs is that individual

graphs are easily composable into larger, more abstract graphs. As the reader might recall,

one of the objectives for this graphical specification language was to provide a mechanism

for data abstraction. Because data flow graphs inherently provide this mechanism, they

are well suited to be used as a foundation for this graphical language.

Davis and Keller's last argument relevant in this context is the fact that data flow

Araphs avoid expressing a specific execution order for nodes, but instead depict data de-

pendencies between the nodes. This fact is important because modern computer systems,

especially embedded systems, are rapidly moving toward multiprocessing and distributed

architectures which require many different portions of a program to run concurrently. Since

data flow graphs reflect data dependencies but not execution order, data flow grLp4,b natu-

rally lend themselves to the decomposition of programs into parts that can be concurrently

executed and make program synchronization requirements immediately obvious.

These arguments, the data availability firing rule, the ability to compose data flow

graphs into larger, mo.- abstract graphs, and the expression of data dependencies but

not execution order, show how naturally the concept of the data flow graph fits into the

envisioned format of the graphical specification langtiage. Because of these reasons, and

some that will become apparent later on, the data flow graph will be the foundation for

5-15

the graphical specification language.

5.2.2 Graphical Language Development With the foundation for the graphical lan-

guage firmly established, it is now time to begin formulating the graphical notations that

will be used to represent the various Refine language constructs. Davis and Keller's data

flow graph formulation uses circles to represent both data and information within the

graph, and squares to represent "complex" functions, i.e., functions that have been com-

posed out of lower level primitive operations. Although this notation seems to work for

small programs where there is no confusion about which elements are data and which are

operations, in larger programs where the individual constructing the program is not nec-

essary the same individual maintaining it, this notation could become very confusing and

decrease the understandability of a program. For this graphical language, then, it would

seem necessary to develop a notation that would differentiate between data and operations,

thereby increasing the clarity of the language. The data flow diagram notation (DFD) rep-

resents operations with a circle and represents information stores with a rectangle (25:235).

The entity relationship diagram also uses rectangles to represent data (20:7). The choice

of a rectangle to represent program data and the circle to represent program operations,

then, would be consistent with existing graphical programming notations, thus reducing

the training time necessary to learn this new language. For this reason then, the rectangle

shall be used to represent program data and the circle shall be used to represent program

operations. For reasons that will be apparent later though, it will be necessary to relax

the graphical notation for operations to include the use of ellipses in order to accomodate

long, meaningful operation names.

5-16

The use of the arrow to represent the movement of information from node to node

in the data flow graph is a convenient and intuitive notation. Indeed, this notation is

consistent with that of DFDs (25:235). Therefore, the arrow notation will be maintained.

The data flow graph notation, however, will require one minor enhancement. In real-time

system and embedded system design, the designer frequently needs to dictate an execution

order on a set of operations regardless of data dependencies. This need usually arises out

of system timing considerations. Therefore, in addition to the solid arrow depicting data

flow from one operation to another, the dashed arrow shall be used to indicate control flow

from one operation to another. The dashed arrow will not denote the flow of information

from one operation to another, but will simply indicate that a particular execution order

is dictated in that program function.

Having established the basic notations for program data, operations, information

flow, and control flow, it is now possible to concentrate on the development of the notations

distinguishing individual operations and data types. The individual operation notations

shall be handled first. There are two approaches available for the development of operation

notation. The first is using simple textual names for the operations and simply enclosing

this name in operation notation, i.e., a circle or ellipse. This approach has the advantage

of being extremely simple to implement. However, text names can take up a lot of space

on a bit mapped screen, an important consideration in the utility of the language since

screen space will c tLciIly ll"uitud " i the dLigudge 1b ilieIeted n a w btation.

The other approach is to implement operation notations using icons, small pictures which

,eaphically symbolize the operation they represent. Icons have several advantages over

textual labels: first, they convey information more quickly than their textual counterparts;

5-17

second, they are language independent, i.e. a Japanese programmer would be able to

understand an icon as well as an American programmer; third, icons take up less space

than textual labels (19:208). Because of their high information content and language

independence, the primitive! graphical language operations will be represented as icons.

However, to ease the user's task of creating new functions out of language primitives, the

graphical language will support both icons and textual labels for user defined functions.

Now that icons have been selected as the primary representation medium for the

graphical language operations, it is possible to begin the design of the language's icons.

One way to approach this icon design would be to design a unique icon for each operation

in the Refine language. This approach would be cumbersome, tedious, and most impor-

tantly, would affect the clarity and utility of the language because of the sheer number of

icons that the user would have to learn in order to use the language. Operator overloading,

the concept of using the same symbology to represent similar functions, e.g., using "+" to

represent the addition of two numbers as well as the addition of an element to a set, offers

one possible mechanism for reducing the number of icons required to represent the Refine

language. Operator overloading requires a more complex language translator that can re-

place the overloaded operator based on the numb-r and type of arguments associated with

the operator, but this additional complexity is well justified in this case by the increased

clarity and utility of the language. The Refine operations have been identified and cate-

gorized by data type. in order to implement operator overloading, it will be nec*ubaiy to

recategorize the operations by operator type rather than by operand type. At this point,

the reader might reasonably ask the reason for the fist categrizadon of operations if the

operations now need to be recategorized. The categorization of operations by operand

5-18

type provided a convenient and even necessary framework for the initial identification of

Refine operations. Also, categorization by operand type will be used later to provide a

foundation for data encapsulation.

Instead of attempting a laborious discussion of the fairly obvious similarities betwCen

operations, this research will simply present a recategorization of Refine operations based

on conceptual similarity. A listing of the recategorized operations is contained in Appendix

E.

With the recategorization of the Refine operations, it is now possible to proceed

with icon design for thE operations. Many of the mathematical operations already have

universally accepted symbolic representations. It would be extremely foolish to disregard

this standard notation in favor of some new symbolism. Therefore for the operations of

addition, subtraction, multiplication, division, aality, greater than, greater than or equal

to, less than, and less than or equal to, standard mathematical notations will be used. The

resulting icons are contained in Figure 5.1.

As the reader will see later in this research, the simple assignment operation is one

of the most widely used operations in this language. The symbology for this important

operation should be distinctive, yet simple, to facilitate quick association between the icon

and the assignment operation by the user. Since the rectangle has been adopted as the

standard symbology for program data, a rectangle, or the more compact square, should

also

5-19

ADDITION SUBTRACTION MULTIPLICATION INTEGERRE~MMNDER

DIVISION EQUALITY INTEGER REAL
DIVISION COERCION

GREATER THAN LESS THAN GREATER THAN OR LESS THAN OR
EQUAL TO EQUAL TO

Figure 5.1. Graphical Representations for Mathematical Operations

be used in this representation. In a convention that will be followed throughout the rest

of the icon development, a darkened square will be used to denote the portion of the data,

such as a field of a tuple of an element of a segment or sequence, that is being modified or

inspected. This feature is not critical in this context because the entire data structure is

of interest, but in later icon developments for more complex data structures, this featurc

will be important for providing clues to the user about which portion of a data structule

is being affected by a particular operation. Finally, an arrow pointing to the darkened

square rcprcscnts thc pac-,mei, of data into thC a-'a Strkicture, a j)reCflt4iUFikh

uses Rohr's findings that action oriented icons more effectively convey their meanings

than their non-action oriented counterparts (23:327). The icon representing the simple

assignment operation is contained in Figure 5.2.

5-20

Figure 5.2. Graphical Representation of the Simple Assignment Operation

Boolean operators also have an accepted standard symbolic representation. Unlike

the standard mathematical notation however, standard boolean symbology is not widely

used outside of the academic environment. Since one of the goals of this graphical specifica-

tion language is to construct a symbolic representation that is accessible to both program-

mers and non-programmers, using an infrequently used, albeit standard, notation would

not serve to enhance the clarity of this graphical language. Indeed, programmers and

nonprogrammers are accustomed to referring to the concepts of negation, conjunction, dis-

junction, etc., by their simpler, popular names, i.e. not, and, or, etc. These popular names

are also short enough that they would not take up a large amount of space. Therefore,

in order to take advantage of the popular naming conventions for these boolean opera-

tions, the popular names themselves, "NOT", "AND", and "OR", shall be used in icons

representing the negation, conjunction, and disjunction operations, similar to the usage of

the word "STOP" in the common stop sign. However, the three boolean operations hav-

ing standard notations without the benefit of short, popular names, implication, univerbal

quantification, and existential quantification, will be represented by their standard symbol-

ogy, implication by €, universal quantification by V, and existential quantification by 3.

5-2!1

CONJUNCTION DISJUNCTION NEGATION

IVERSAL MPLICATION
OWNS% OUANTFICATION

ORDERED
CONJUNC7ION DISJOION

Figure 5.3. Graphical Representations for the Boolean Operations

The two remaining boolean ope2rators, ordered conjunction and ordered disjunction have

neither a popular name nor a standard symbology. Because of the close similarity ordered

conjunction and ordered disujunction have with the common conjunction and disjunction

operators, it would be quite beneficial to construct icons for the ordered operators resem-

bling their unordered couterparts. Ordered conjunction and ordered disjunction, then, will

be represented by the words "AND-+" and "OR-," respectively. This notation is distinct

enough to prevent confusion between the ordered and unordered operations, yet similar

enc. ,h to ym lze thc close similarity bctwcn thc two types of Opcrations. A summary

of the icons representing the boolean operations is contained in Figure 5.3.

Like the numeric operations, several of the set operations also have a standard sym-

bology. Adhering to the principle of using existing, popular notation when practical, the

5 22

union and intersection operations as well as tLe subset and membership testr, will te repre-

sented by their standard symbology, i.e., u, n C, and E respectively. The element Addition

and deletion operations, 6 ":'ell as set differeace operation, are grouped with thiir numeric

counterparts, i.e. addition for element addition anid subtraction for element deiet;or and

set diference, because of their conceptual similarity to the numeric operations. The arbi-

trary .element operation will be represented by a question mark, the common symbol for

the unknown. The size operation will be represented by a ruler, a common measuring de-

vice. The empty test will be represented by 0?, thus using the standard empty set notation

with a question mark to symbolize the query about the emptiness of a set. The reduction

operation shall be simply represented by passing a set variable as an argument to the oper-

ation that the set will be reduced by. Since the overloaded operators for element addition

and deletion require two arguments to complete the expression, there is no problem with

ambiguity in selecting the representation. The set to sequence coercion operation is best

represented by a graphical representation of the process of transformation. Therefore, this

coercion will be represented by the symbol "-+ SEQ" which represents the movement of

th, data object to a sequence, represented by the abbreviation "SEQ". Finally, the filter

operationi is the most conceptually abstract concept yet handled which complicates the

task of icon design. However, if one were to visualize the actual purpose of a filter, to

create a smaller collection of items out of a larger collection, the icon design process be-

comes relatively simple. The icon representing the filter operations, then is a large box,

symbolizing the large collection, above a large "V" structure, reprecenting the filter, above

a small box, symbolizing the smaller collections. This icon, thei., graphically depicts the

actual filter process making the icon more meaningful and intuitive for the programmer

5-23

UNION INTERSECTION SUBSET IME48ERSHIP

EMPTY TEST AqBTRNY FILTER SIZEELEMENT

d Io.C 0 6EUENCEM& , DIFFERENCE CRCIONOR

ENT ENTNIT, ON DIE CE ScQUNC

Figure 5.4. Graphical Representations for Set Operations

and nonprogrammer alike. A summary of the set operation icons is contained in Figure

5A.

The literature search for this research did not reveal any standard notation for the

fundamental sequence operations. Therefore, unique representations were constructed for

each of these operations. Rohr points out the importance of using icons depicting action

rather than using simple picture icons (23). Taking this into mind, then, it is now time to

develop icons for the sequence operations. Rather thaji attempt a tedious explanation of

each icon indiidually, this paper shall only explain key leatures ol the icons as a gboup.

Since the representation for data in this graphical language is the rectangle, that ymbol is

used throughout the sequence icons also to represent a single piece of data. An eloigated

rectangle represents a sequence of data. The darkened portion of each icon points out

5-24

SIZE NTH-ELEMENT 1ST ELEMENT LAST ELEMENT SUBSEQUENCE

ASSIGN INSERT PRENDT NI4ENO DELETE
NIH-ELEMENT NTH-ELEMENT ELEMENT ELEMENT NTH ELEMENT

REVERSE CONCATENATE DOMAN RANGE IMGE

Efl4Y TEST MEMBERSHIP FILTER EQUALITY

SET MAP
COERCION COERCION

Figure 5.5. Graphical Representations of Sequence Operations

the portion of the sequence that is being manipulated by the operation. In each icon, an

arrow is used to provide the user additional cues about the direction that the operation is

taking. For example, in the icon representing the insertion of an element into a sequence,

the icon uses an arrow pointing to a slightly raised element to symbolize the "pushing" of

the element into the sequence. Likewise with the icon for the element deletion, an arrow

points to a slightly lowered element symbolizing the "pushing" of the element out of the

sequence. With thebe clues in mind, the reader can lind the sequence operation icons in

Figure 5-.

lve of the icons in the sequence operation group bear special mention. First. the

sequence to set and sequence to map coercion operators follow the "standard" that was

established in the development of the set to sequence coercion operation. i.e., the right

5-25

arrow pointing to the target data type symbolizing the movement of the operand from

its original data type to its final data type. The other three sequence operators, the

image, domain, and range operators, differ significantly from the other sequence operators

in the abstractness of the operations that they represent. Whereas it is fairly easy to

depict the process of inserting an element into a sequence, it is not nearly as easy to

depict the operation of returning the range of a sequence. It is also important to realize

that novice users of this language are unlikely to begin by using such advanced concepts

while advanced programmers using these concepts need a way of quickly recognizing these

operations. Rather than attempting to construct some abstract symbology to represent

these operations, perhaps a textual symbology would better enhance the clarity of the

language in this case. The three letter symbols IMG, DOM, and RNG would not take

up much space and, when working in the context of these operations, these abbreviations

would provide the user with enough information to allow him or her to quickly associate the

abbreviations with the appropriate operations. In fact, although no experiments have been

performed to verify this hypothesis, it seems logical that the abbreviations would allow the

user to make the association between the abbreviation and the operation more quickly than

would be possible with some abstract iconic representation. Therefore the abbreviations

IMG, DOM, and RNG will represent the image, domain, and range functions.

The icons for the field assignment and retrieval operations for the tuple and object
datyce rlt y cm to tA. th rd ig rcl, the symbology for

simple assignment was the arrow pointing to a darkened square. Since the field assignment

affects only a portion of a data structure, the logical symbology for the field assignment

would be an arrow pointing to a darkened portion of a square which is exactly the symbol-

5-26

RTIEAL AS MIENT EULT

Figure 5.6. Graphic.al Representations for Tuple Operations

ogy that has been chosen. The field retrieval operation is handled similarly; the operation

is represented by an arrow leading away from a darkened portion of a square. These iconic

representations are contained in Figure 5.6.

The operations closure, composition, inverse, and transitive closure, present the same

problems that the image, domain, and range operations presented, i.e. the iconic represen-

tation of highly abstract mathematical operations. The composition and inverse operations

already have standard notations, f o g and f 1 respectively. The closure operation returns

the smallest set such that a specified operation performed on a member of the set results

in another member of the set. This operation is represented by using a circle, the standard

notation for a set, with an arrow, representing an operation, that originates and termi-

nates inside the circle. Transitive closure is a similar operation. If a relation holds for two

5-27

members 6f a set, say x and y, and if the same relation holds for the consequent of the first

relation and another member of the set, say y and z, then a property called transitivity

holds if and only if a relation exists between the antecedent of the first relation, x, and the

consequent of the second relation, z. The transitive closure operation returns the smallest

set for which the transitivity property holds for all of the members of that set. By coinci-

dence, a cloverleaf pattern describes just such a relationship, i.e. if any two relationships

exist between three elements in order, then a relationship also exists between the first and

third elements. A circle imposed over a cloverleaf could then represent the membership of

all of these points in one set. These then will be the admittedly abstract icons adopted to

represent -these operations. The map to -relation -and relation to map coercion operation

icons follow the previously adopted patterns. All of these icons may be found in Figure

5.7.

The final icons to be developed for this language are icons representing the creation

and destruction of objects. The development of a unique icon representing the creation

of objects would be in line with the procedure that has been followed up to this point.

Such an icon would require that the programmer include an additional icon in a network

to show that he or she wants to create an object when the presence of an object data type

implies this very fact. Thus the development of a unique object creation would not enhance

the utility-of this graphical language but would reduce programmer productivity, thereby

decreasing the utility of the language. Common sense dictates, then, that no object creation

icon be developed; inlteiLd, fox etdh uiikju objet..t iep~e~eitdiu, i.uunterud in the dtta

flow graph the object creation function will- be automatically called. However, an object's

persistant nature does necessitate the develop-ment of a unique object destruction icon.

5-28

SIZE FILTER IMAGE DCOAIN RANGE

CLOSURE COMPOSITION INVERSE EMPTY TEST EQUALITY

SNARY TRANSITIVE
RELATION CLOSURE
COERCION

Figure 5.7. Graphical Representations of Map and Binary Relation Operations

Keeping with the rule that simpler is better, the object destruction icon shall use a large

'X' imposed on a double rectangle, the representation for an object whose development

will be-discussed later. This svmbology is contained in Figure 5.8.

The translation of the Refine language into a graphical language requires some ad-

ditional icons to represent Refine features that are execution control constructions -rather

than explicit data operations. The first two additional icons are the start and finish icons.

Although a language translator could find the starting point of any network by following

the arcs in the network backward until it can go no further, explicit start and stop icons

improve the clarity of the language by helping the user to find the starting and-stopping

points of a network without requiring him or her to perform extensive network backtrack-

ing. The most common starting and stopping symbols in society today are the red and

5-.29

Figure 5.8. Graphical Representations of the Object Destruction Operation

green lights of the common traffic light. Because of the familiarity of these symbols, then,

they will represent the starting and stopping points for any function in the graphical spec-

ification language. One additional icon necessary for the graphical language is an icon to

represent enumeration over a collection of homogeneous data. The enumeration operator

a,.ws the execution of a series of operations over each element in a group of data. Enu-

-meration -will be one of the most commonly used operations in the graphical language,

thereby deserving a unique icon to facilitate easy access to the operation. With no com-

mon symbology avaiible to represent enumeration, it is necessary to develop a symbology.

The symbology to be used will consist of three adjacent blocks, representing a collection of

data, and two arro%%s. one originating from the first block and terminating on the second

block and another originating from the second block and terminating on the third block,

symbolizing the processing of each element in the collection. Although not particularly

intuitive, this symbology is simple enough that it should be relatively easy for a user to

5-30

START STOP ENUMERATION DISPLAY
SYMBOL SYMBOL SYMBOL SY1MBOL

Figure 5.9. Graphical Representations of Start, Stop, Enumeration, 'L .- Print Operators

construct an association between this representation and the enumeration operation. The

final additional icon is an icon to-represent the display of information for the user. Refine

does not provide an explicit-operation-for the display of program information since it relies

on its underlying Lisp foundation to provide that functionality. This graphical language.

however, must explicitly provide such an operation. Since vision is the primary method

that humans use to investigate their world, an icon based on sight would probably allow

users to make the most rapid association between the print operation and an icon. ror

this reason, as well as for its singular distinctiveness, an eyeball will be used to represent

the display operation. These four icons ae portrayed in Figure 5.9.

Now that the operator icon development is complete, the data type representation

development can proceed. It would be possible to develop icons for each data type that

would represent all instances of that particular data. type. This approach is unreason-

able however because programs commonly use many different instances of the same data

5-3 1

type and using the same representation for each instance would give the user no way of

differentiating between the various instances. In this case, language clarity and utility

clearly dictate that textual labels be assigned to each data structure to aid in structure

identification. Therefore, data in this graphical language shall be represented by a rect-

angle containing a meaningful name denoting a particular instantance of a data type. As

the reader will see later, when constructing large networks, connecting one data icon to a

number of -operator icons can result in a complicated and largely unreadable network. By

facilitating the assignment of unique names to instances of a data type, this language can

allow multiple representations of a uniquely named data type to represent the same piece

of data thus allowing the programmer to duplicate-data in various places in the network

thereby increasing-the clarity of the language. A requirement to name each and every piece

of data required to construct a program, however, can-turn into a tedious and unnecessary

task depending-on-the purpose of the data. In ordei to-give the user the option of deciding

when to use unique naming of program data, this graphical language shall also support

the concept of anonymous data, i.e. an instance of a-data type without a unique name.

Unlike uniquely -named data, each duplication of a-piece of anonymcus data will represent

a new instance of that particular data type. Anonymous data will also be particularly

useful when used with the enumeration operator. Such a conjunction v .fld simply apply

an enumeration over all of the elements of that particular data type. It is presumed that

the language translator would be sophisticated enough to-recognize and restructure enu-

merations over an infinite set, such as integers or reals. It would be prudent at this point,

however, to caution that this feature could be-abused and actually decrease the clarity of

the language. However, the user is the expert in any situation and therefore he or she is

5-32

OBJECT DATA
RRESENTA11ON REPRESENTATDON

Figure 5.10. Graphical Representation of Data Types

entrusted with this capability in the hopes that it will greatly improve the utility of the

-language.

Because of their unique persistant character, objects deserve special consideration

as a unique data type. A distinctive representation would alert the user to the persistant

-nature of objects, a characteristic that can cause very subtle errors in program-execution if

not fully understood. Objects are still a valid data type though, and should therefore iave

a similar representation. Objects wil therefore be represented by a two nested rectangles.

Objects, like the other data types, may also be anonymous or uniquely named. The

representations for the data types in the graphical language are contained in Figure 5.10.

Now that representations for all operations. data types. and information flows have

been developed, it is now possible to begin putting these pieces togethe, to investigate the

syntax of this graphical language.

5 - 3

5.3 Graphical Language Syntax

In traditional programming languages, language syntax for a particular expression is

described in terms of precise sequences of keywords and user defined names. The syntax

of a graphical language, on the other hand, is described in terms of how various nodes

arm connected in a graph. Since all -of the operations in the Refine language require some

data to operate on, there will be no operator node in the graphical language that is not

connected to some data node. In addition, an operator node may also be connected to

another operator node with a control flow, the dataless control signal construct that was

discussed. In Refine, all functions have a definite beginning and ending point; likewise

the graphical language should also -have a definite beginning and ending point, although

this feature is -more for-the benefit -of language clarity than processibility. Based on these

simple foundations then, the basic syntax, in Backus-Naur Form notation, for a statement

in this graphical language is

< statement >::= [< data - flow >]{< data - flow > I < control - flow >}

< op - node > [< data - flow >]{< data - flow > I < control - flow >}

The formula above compactly states that an operator node must have at least one data

flow input into the operator with any number of additional data and control flow inputs,

and that an operator must have at least o ie data flow output and any number of additional

data and control flow outputs. The reader i- reminded that this formula is only a general

statement of the graphical language syntax and that the syntax of particular operators is

governed by the operator itself.

5-34

Individual operator syntax is governed by the number, order, and type of arguments

as defined in the Refine Itser's Guide (23). This strict compliance with Refine language

definitions and conventions preserves a one-to-one and onto translation scheme between

the graphical language expressions and the corresponding Refine expressions. Other than

compensating for the overloading of graphical operator representations, the graphical lan-

guage maintains a one for one correspondence between its operators and Refine operators

which makes conversion between the two language a straight forward construct replacement

process. The translation process between the graphical language and the Refine language

will be greatly cl-rifed in the upcoming graphical language application examples.

5.4 Examples Using the G7Yphical Specification Language

Up to this point, all of the discussion of this graphical language has been in relatively

abstract terms. Although abstract explanations about language use suffice for acquainting

the reader with basic language concepts, concrete examples are far superior in demon-

strating the utility of the language features developed. Therefore, the clarity and utility

of this graphical specification language is demonstrated by using the language to specify

two problems used during the Fourth International Workshop on Software Specification

and Design (11, 18), a library control program and an elevator control program. Selected

portions of the graphical specifications foi each of these problems are presented here; com-

plete graphical specifications are contained in Appendix G for the library control system

and in Appendix I for the elevator control system. The graphical specifications presented

here are accompanied by their corresponding Refine specifications in ordp- Go allow the

user to compare the '.wo specification formats. Complete Refine specifications for the ii-

5-35

brary control system and the elevator control system are contained in Appendices F and

It respectively.

5.4.1 Library Control System Example The first problem concerns a library database

control program (18). This program allows the library to perform the usual library func-

tions:

* Add a book to the library stacks

* Remove a book from the library stacks

* Check out a book

-e Return a book

9 Produce a listing -of the books on a particular subject

* Produce a listing of the books by a particular author

e Produce a listing the books currently checked out by a patron

* List the patron who last checked out a particular book

The graphical specifications, along with the corresponding Refine specifications, for adding

and removing books from the library stacks, and checking out and returning books are

-presented in this section. Complete graphical and Refine specifications for this problem

are contained in Appendices G and F respectively.

5.4 1.1 Add a Book to the Library Stacks The graphical and Refine speci-

fications of the Add-Book function are contained in Figures 5.11 and 5.12 respectively.

The execution of the Add-Book function begins at the start symbol, i.e. the green light,

5-36

which passes a control signal to the enumeration icon. The enumeration operator takes

the anonymous book icon as an argument which results in an enumeration over all of the

books currently defined in the environment. The scope of the enumeration operator is

defined by the box drawn around the four operators near the top of the page. During the

enumeration, each book is passed to the field retrieval operator which retrieves the "Title-

of-Book" field from the current book. The title of the book is then checked against the

function argument "Title". "Title" is distinguished as an incoming argument by the right

pointing arrow adjacent to the data icon which represents data coming into the function.

The result of the comparison between the title of the book and the "Title" argument-is

then passed to a true/false selector. If the title of the book and "Title" are identical then-

that book is added to the variable "Bookset". After the enumeration is complete, "Book-

set" is tested for emptiness. If the set is not empty, the function terminates immediately.

If the set is empty, then the operations enclosed by the block near the bottom of the-figure

are executed. First, a book is created (by virtue of the "Newbook" icon being used in the

figure") and then "Title-of-book", "Author-of-book", "Subject-of-book", "On-shelf", and

"Checked-out" fields of "Newbook" are set to their respective values. After the "Checked-

out" field assignment is complete, "Newbook" is passed to the port on th p icon, which

-terminates the function and passes the object out of the function.

5.4.1.2 Remove a Book from the Library Stacks The graphical and Refine

specifications of the Remove-Book function are contained in Figures 5.13 and 5.14 respec-

ztively. The Remove-Book function starts with an enumeration over the books currently

-defined in the environment. The "Title-of-book" field is retrieved from the currently enu-

5-37

+ 0?

W T

M__ = IE RUP A

Figure 5.11. Graphical Specification of the Add-Book Function

5-38

% Library maintenance operations
rule Add-Book-To-Library(author : string,

title string,
subject : set(string))

% If there's not already a book with this title
% (to guarantee unique titles)
empty({ b I (b: book) book(b) & title-of-book(b) = title }) -- >

% Create a new book object
let (new-book: book = make-object('book))

% And set the attributes of the book
author-of-book(new-book) <- author;

title-of-book(new-book) <" title;
subject-of-book(new-book) <- subject;
on-shelf(new-book) <- true;

book-out(new-book) <-. false

Figure 5.12. Refine Specification of the Add-Book Function

merated book. This field is then compared with the function argument "Book-title'. If

the field is equal to "Book-title" then the book is added to the variable "Bookset". An

arbitrary element of "Bookset" is then retrieved and that element, a book, is destroyed.

After the book destruction, the function terminates. The reader should notice that the

"Bookset" variable is guaranteed to either be empty or to have one element because of

the checks performed during the Add-Book operation that ensure that every book in the

library has a unique title. Therefore the arbitrary element operation simply returns the

only element in the set. The reader might also notice that this function assumes that a

user inputs a book -title that exists in the library.

5.4.1.3 Check Out a Book The graphical and Refine specifications of the

Check-Out-Book function can be found in The Check-Out-Book function starts by per-

forming three enumerations, two over the set of users currently defined in the environment

5-39

Figure 5.13. Graphical Specification of the Remove-Book Function

5-40

% Assumes that every book has a unique title
rule Remove-Book-From-Library(book-title : string)

% If a book of this title exists
empty({ b I (b: book) book(b) & title-of-book(b) = book-title }) -- >

% Find the book with this title
let (book-to-delete: book = arb({ b I (b:book) book(b) &

title-of-book(b) = book-title }))
% And delete it
erase-kb-object(book-to-delete)

Figure 5.14. Refine Specification of the Remove-Book Function

and one over the set of books currently defined in the environment. The first two enumer-

ations call the User-With-Name function, which will be described later, with arguments of

the currently enumerated user and the variables "User-set-l" and "User-set-2" and the in-

coming arguments "Whos-asking" and "Users-name" respectively. Since no bounding box

exists around the enumeration, the enumeration's-scope-is restricted to the single following

operation by default. The enumeration over the books repeatedly calls the "Books-with-

title" function, which will also be described later, with the currently enumerated book, the

variable "Book-set", and the incoming argument "Which-book" as arguments. The results

of each enumeration, a set of users for the first two enumerations and a set of books for the

final enumeration, are then tested for emptiness. The test results are each negated then

all of the results are ANDed together. In plain language, the top portion of this function

is simply checking to ensure that users with names of "Who-asking" and "Users-name"

and a book with the title "Which-book" actually exist. If users with the proper names

and a book with the proper title exist, then the block of operations at the bottom of the

figure are executed; if those users and the book do not exist then the function is imme-

diately terminated. If the function is not terminated, then an arbitrary element of the

5-41

"User-set-i" and "Bookset" variables is retrieved (the user might recall that because of

the checks to ensure unique names for all users and unique titles for all books that were

performed in the Add-Book and Add-User functions, "User-set-i" and "Bookset" are each

-guaranteed to have no more than one element). The "Staff" field of the user is retrieved

and the "On-shelf" field of the bool: is retrieved. These two values are ANDed together

and if the result is true then the inner block is executed; if the result is false then the

function is terminated. In the inner block, the "Book-set" variable is again reused and

an arbitrary element is returned from this set. At this point, it would be wise to remind

the reader that because of the unique naming guarantees of both users and objects in the

system, each set of users and books is guaranteed to have only one element; the arbitrary

element operation is simply a tool for retrieving this single element from the set. The

"On-shelf", "Book-out", and "Last-checked-out" fields of the book are then set to their

respective values. At this point, both blocks are exited and the function is terminated.

5., .1.4, Return a Book The graphical and Refine specifications for the Return-

Book function can be found in Figures 5.17 and 5.18 respectively. Return-Book is very

similar to Check-Out-Book; enumerations are used to fi all of the users having a name

matching the incoming argument "Whos-asking" and all vf the books matching the incom-

ing argument "Which-book". The reader is reminded that because of the guarantees for

unique names in the book and user creation functions, there will not be more than one

book with a particular title or more then one user with a particular name. If a user with

the proper name and a book with the proper title exist then the outer block of operations

is executed; if not, the function is terminated. In the outer block, the user is checked to

5-42

- - - - - - - - -- - -- --

-SET

FN F --

SIM/
LEE

-AM

MFAJ.S

Figure 5.15. Graphical Specification of the Check-Out-Book Function

5-43

rule Check-Out-Book(whos-asking: string,
users-name: string,
which-book: string)

% If there is a user with the name of whos-asking
'empty({ u I (u: user) user(u) & user-name(u) = whos-asking }) &
% And if there is a user with the name of users-name
empty({ u I (u: user) user(u) & user-name(u) = users-name }) &

% And if there is a book of the title which-book
'empty({ b I (b: book) book(b) & title-of-book(b) = which-book }) -- >

% Then if whos-asking is on the staff
staff(arb({u I (u: user) user(u) & user-name(u) = whos-asking})) &
% And if the requested book is on the shelf
on-shelf(arb({ b I (b: book) book(b) &

title-of-book(b) = which-book })) -- >

% Then find the book with the title of which book
let(boos-to-check-out: book arb({ b I- (b: book) book(b) &

title-of-book(b) = which-book}))
And check the book out

set-attrs(book-to-check-out,. 'on-shelf, false,
'book-out, true,
'last-checked-out-by, users-name)

Figure 5.16. Refine Specification of the Check-Out-Book Function

5-44

ensure staff membership and the book is checked to ensure that it is currently checked out.

If both of these conditions hold then the inner block is executed; if not then the function

-is terminated. The inner block simply sets the "Oh-shelf" and "Book-out" fields of the

book to the proper values and then terminates the function. The reader should recall that

because objects exist until explicitly destroyed, there is no need to pass the modified object

out of the function.

5.5 Graphical Specification of the Elevator Control System

The second problem that will be used to demonstrate the use of the graphical speci-

fication language is an elevator control system. As stated in (11), the requirements for the

elevator control system are:

1- Each lift has a set of buttons, one for each floor. These illuminate when
pressed and cause the lift to visit the corresponding -floor. The illumination is
cancelled when -the corresponding floor is visited by the lift.

2- Each floor-has two buttons (except ground aivd top floor), one to request
an up lift and one to request down-lift. These buttons illuminate when pressed.
The illumination- is cancelled when a-lift visits the floor and is either moving in
the desired direction, or has no outstanding requests. In the latter case, if both
floor request buttons are pressed, only one should be cancelled. The algorithm
to decide which- to service should- minimize the waiting time for both requests.

3- When a lift has no requests to service, it should remain at its final
destination with its doors closed and await further requests.

4- All requests for lifts from floors must be serviced eventually, with all
floors given equal priority.

5- All requests -for floors within lifts must be serviced- eventually, with floors
being serviced -sequentially in the direction of travel.

6- Each lift has an emergency button which, when pressed causes a warning
signal to be sent to the site manager. The lift is then deemed 'out of service'.
Each lift has a mechanism to cancel its -out of service' status.

5-45

- - - - - - - - - - - - - - -- - - - -

I L
/0

M-I Ii- ?

TRUEFAS

Figure 5.17. Graphical Specification of the Return-Book Function

5-46

rule Return-Book(whos-asking: string, which-book: string)
, If there is a user with the name of whos-asking
empty({ u I (u: user) user(u) & user-name(u) = whos-asking }) &

% And if there is a book with the title of which-book
'empty({ b I (b: book) book(b) & title-of-book(b) = which-book }) -- >

% Then if whos-asking is on the staff
staff(arb({ u I (u: user) user(u) & user-name(u) = whos-asking })) &
X And if the book is checked out
book-out(arb({ b I (b: book) book(b) &

title-of-book(b) = which-book })) -- >

, Then find the book with the title which-book
let (book-to-be-returned: book = arb({ b I (b: book) book(b) &

title-of-book(b) = which-book }))
, And check the book back in
set-attrs (book-to-be-returned,

'on-shelf, true,
'book-out, false)

Figure 5.18. Refine Specification of the Return-Book Function

This problem is further complicated by the fact that supporting logic must be provided to

drive a discrete event simulation of the actions of the elevator mechanisms.

The Refine solution to the elevator control system problem can be found in Appendix

H. Since the graphical and Refine specifications for this problem do not introduce any new

concepts, only the most important parts of the graphical specification, the Do-Elevator,

Handle-Events, and Check-State functions, will be discussed in this section. The entire

graphical specification can be found in Appendix I.

5.5.1 The Do-Elevator Function The Do-Elevator function, shown in Figure 5.19,

is the main function in the elevator system and drives both the simulator and the elevator

control subsystems. Do-Elevator continues executing basic system activities until all of the

schedules of the elevators tre empty and all of the elevators are idle. Until this situation

5-47

occurs, the elevator finds all current system events (events that occur on or before the

current system time), and calls the function to handle all of these events. Do-Elevator then

calls the function Check-State for each of the elevators in the system to modify the state

of each elevator, if necessary, based on current system conditions. Do-Elevator completes

a cycle by removing all old events from the system, scheduling new events, incrementing

the system clock, and displaying the current state of the system.

5.5.2 The Handle-Events Function The Handle-Events function, shown in Figure

5.20, uses an enumeration to handle each of the events handed to it. With each event,

Handle-Events uses a multi-way selector to execute the proper event handler based on the

type of event that is encountered. Once all of the events handed to Handle-Events have

been handled, Handle-Events terminates.

5.5.3 The Check-State Function Like H-.Aidle-Events, the Check-State function,

shown in Figure 5.21, uses the multi-way selector to determine the proper course of action

given a particular elevator state. Because Check-State handles only one elevator at a time,

Check-State has no need for the enumeration operation. Once the proper state handler has

been determined by the multi-way selector, that handler is executed. Upon termination of

the appropriate state handling function, Check-State also terminates.

5.6 The Graphical Specification Language Environment

Thus far, discussion about this graphical specification language has centered about

the language itself. This concern with the development is obviously extremely important,

but any programming or specification language is virtually useless without a supporting

5-48

-- -. -4

T T

OR

F

SXDULE-NEEVEN~TS WX.L-O.OCC

1VENT.

Figure 5.19. Graphical Formulation of the Do-Elevator Function

5-49

IN

I"-EEN I KE --VN -H-V

h(D

Figure 5.20. G3raphical Formulation of the Handle-Events Function

5-50

I IQ

HI"T ~ HC AO I-K I

Im 0 MV "(E
I I

reILAO T I I E-11VAM

0
ss I 0

igr 5.1 Grpia omltoIfteCekSaeFnto

environment to assist the programmer in using the language. This section will briefly

discuss the features of an envisioned graphical specification language environment.

The environment to support this graphical specification language would ideally have

seven components: an editor for the creation and manipulation of graphical specifications,

a librarian to assist the user in locating and using existing software components, a debug-

ger which would graphically display the execution of a particular specification as well as

allowing the user to set breakpoints and to retrieve and assign vahies to variables at any

time during the execution process, an icon editor that would allow the user to design new

icons for user defined functions, a converter that would assibt in the conversion of existing

graphical programming notations into this language, a translator which would produce

the executable Refine code from a graphical specification and vice versa, and an on-line

help facility which could provide the user with information about any part of the graphical

environment at any time. With these tools at his or her disposal, the programmer would

not be forced to leave the graphical environment for any reason; all software development

and maintenance could occur within the graphical specification environment. A graphical

representation of the envisioned system architecture is contained in Figure 5.22.

The editor would be the user's primary interface with this graphical system and as

such, should be as comfortable for the user as possible. Because of the graphical nature

of the entire environment, the editor would have much more in common with full featured

drawing programs or computer assisted design programs than with traditional text oiented

editors. Ilie editor would ideally allow the user to have multiple windows open at once,

allowing the user to cut and paste sections of graphical "code" between windows. The

editol should allow the user highly flexible routing of network arcs and should support a

5-52

INTERPRETER

ON-LIJE HELP TRANSLATER/
FACILITY CON VERTER

EDITOR

LIBRARIAN IDEBUIGCER

KMO
EDITOR

PROPOSED SYSTEM ARCH-ITECTURE FOR
GRAPHICAL SPECFICATIOIN SYSTEM

Figure 5.22. Architecture of Graphical Specification System

5-53

very large construction space for specification creation and maintenance.

The icon editor would allow the user to create new icons for user defined function or

could even possibly be used to change the iconic representations for existing language oper-

ations, although such an application would be discouraged in order to maintain a relatively

standardized graphical language. This control over iconic representations would provide

the programmer a powerful luA, for constructing representations that are meaningful both

for the programmer and the programmer's clients.

The librarian would be the primary tool for categorizing and then retrieving software

components. The librarian would be the primary vehicle for implementing data encapsula-

tion mechanisms, the binding of data and operations together, through the use of software

component toolkits similar to those discussed by Ingalls, et al (16). Used in conjunction

with the icon editor, the librarian could conceivably be used to construct domain spe-

cific toolkits which would allow non-programmers to at least partially specify their system

requirements.

A graphical debugger would enhance programmer productivity by allowing him or her

to actually see a specification execute in its graphical format. A graphical representation of

specification would improve programmer/client communications by allowing the client to

see exactly what a specification is doing, thus enhancing the client's ability to understand

in ramifications of his or her system requirements. The graphical debugger would also have

features commonly found in today's debuggers such as the ability to set breakpoints and

the ability to inspect and set variable values.

Because of the large amount of program documentation that now exists in some

5-54

form of graphical programming notation, it would be extrememly beneficial to have a

tool capable of converting these existing notations into graphical specification notation.

Although a fully executable graphical specification is unlikely to be produced by such a

conversion tool, the tool could provide a significant head start in the reimplementation

of existing systems using formal specification methods. The heuristics already presented

offer a starting point for the construction for such a conversion tool, but an effective

implementation of a conversion tool should be based upon a formal foundation defining a

set of mappings between frmally defined program design notations and a formal definition

of the graphical specification language. Handling the varied dialects of these existing

notations likely to be encountered would require an set of mappings to be defined between

each dialect and the graphical specification language combined with some sort of knowledge

base to assist in deciding which sets of mappings to apply to a pai 'icular notation.

An on-line help facility would greatly increase programmer productivity by reducing

the time the programmer spends retrie.ing and searching through system documentation.

The help facility would allow the programmer to search system documentation through

keyword searches or through a documentation index.

The final component, the translator, provides the means for translating graphical

specifications into textual specifications and vice versa. This tool is obviously important

because it provides the graphical specification with access to the Refine translator which

can then translate the Refine code into a more traditional programming language, e.g. C

or Ada.

5-55

Each of these components, then, provide key capabilities not only to access the

graphical specification language, but also to help the programmer manage and maintain

complex specifications with as little additional effort as possible.

5.7 Assessment of the Graphical Specification Language

As the reader might recall, a number of objectives were established at the outset of

this research in order to guide the development of this graphical specification language.

These objectives, grouped into the categories of language clarity and language utility, are

" Clarity of Language

- Abundant use of perceptual coding of information

- Restrict users to easily understood objects

- Graphical specfications that differ conceptually should also differ visually

- Mechanisms to facilitate data abstraction

* Utility of Language

- Allow easy and accurate revision of specifications

- Mechanisms to facilitate and encourage software component reuse

- Mechanisms to facilitate data encapsulation

With the language development complete, it is now possible to assess the graphical langage

against these criteria.

5-56

5.7.1 Abundant Use of Perceptual Coding of Information The original purpose of

this objective was to emphasize the importance of non-symbolic representations, such as

spatial orientation, as well as symbolic representations in the graphical language. This

graphical specification language uses perceptual coding in several forms. The first use

of perceptual coding in this language is the use of directed arcs to join operator nodes

to data nodes and to other operator nodes. This coding is perceptual and not symbolic

because the joining relies on the spatial adjacency of the directed arc and its originating

and terminating nodes. This perceptual coding is perhaps the most important coding in

the graphical specification language because it is this physical adjacency that allows the

user to visualize the flow of data through a particular specification. This perceptual coding

is also important because its absence immediately notifies the user that some part of the

specification has been incorrectly specified.

Another example of perceptual coding in this graphical specification language is

the use of the start and stop symbols denoting the beginning and ending of execution of

a particular specification segment. The start and stop symbols are perceptual because

they are placed near the end of a specification function and connected to the starting

and ending node or nodes by a directed are, thereby providing the user additional clues

about the starting and stopping points of a particular graphical specification function.

This perceptual coding is important because it, like the directed arcs connecting operator

nodes, helps the user to visualize program execution, in turn providing the user with a

better overall understanding of a specification's behavior.

A final example of perceptual coding in this graphical language is the use of boxes

around groups of operator nodes to indicate the execution of an entire block of operations

5-57

undcr the control of another operation, for example a selector operator or an enumeration

operatw. Although the box itself is an example of symbolic coding, the placement of the

bo ai.i, e a group of operations is clearly an example of perceptual coding because such

a l'1ace.-jt entails a spatial relationship between the box and its "client" operators. As

with the rter two examples of perceptual coding, the box is important because it too

helps th. ser to visualize and to understand the underlying behavior of the function in

which it i. used.

Perceptual coding, then, has been widely used throughout this graphical specification

language and, indeed, is an integral part of the language.

5.7.2 Restrict Users to Easily Understood Objects Great pains have been taken

to represent each of the Refine primitive operations in symbols that, if not immediately

recognizable, can be rapidly associated withi a particular Refine concept or operation. The

provision of an icon editor in the graphical specification language environment provides

the user with a valuable tool for customizing the language environment even further to

assure the existence of easily understood objects.

It is important to point out here that there has been absolutely no attempt at restrict-

ing users to any set of components, however. The approach adopted in the development

of this language was to provide the user with a set of specification tools which would be

applicable in a wide variety of situations. As mentioned in the discussion of the graphi-

cal specification environment, however, it would be within the user's power to construct

domain specific "toolkits" from which special purpose specifications could be rapidly as-

sembled. The user providing the toolkits, then, could conceivably restrict the toolkit user

5-58

to only the "easily understood" objects found in the toolkit.

5.7.3 Graphical Specifications that Differ Conceptually Should Also Differ Visually

The conceptual foundation for this graphical specification language, the dataflow graph,

enforced this objective well. Since any change to the dataflow network is a change to

the specification itself, and since network changes are made immediately obvious to the

user through the presence, or lack thereof, of a directed arc, the user can quickly detect

a difference in specifications by simply comparing the dataflow networks constituting the

specifications in question. The carefully chosen icons serve to make differences between

specifications even more apparent because of the distinctiveness of each operator's iconic

representation.

This objective was compromised somewhat by the decision to overload graphical

operators. That decision, made in an attempt to reduce thi overall number of concepts that

the user was required to master, ultimately made different specifications look somewhat

more similar because the same icon was used to represent different operations. This increase

in similarity is very slight, however, because the user still has a number of clues, such as

the number and types of the operands, that allow him or her to distinguish between the

various operations that the icons represent. The gain in language clarity and utility by

minimizing the number of primitive symbols used in the language far outweighed the minor

compromise of this objective. Overall then, this objective has been satisfactorily achieved.

5.7.4 Mechanisms to Facilitate Data Abstraction The demonstrations of this graph-

ical specification language in the library control system and elevator control system prob-

lems bear witness to the excellent data abstraction capabilities of the language. Using the

5-59

dataflow graph as a foundation for this graphical specification language proved to be a

wise choice for satisfying this objective. Davis and Keller point out how naturally dataflow

graphs lend themselves to functional composition (10:31). This graphical language has

taken these natural properties and expanded them not only to include operator composi-

tion but also data type composition in order to provide the user with powerful tools for

managing specification complexity.

5.7.5 Allow Easy and Accurate Revision of Specifications Although the modularity

of this graphical specification language provides the basic facilities to accomplish this

objective, language features alone cannot satisfy this objective. The editor provided as part

of a graphical specification environment, as discussed earlier, would be the primary means

of satisfying this objective. In order to acheive the desired ease of editing, the graphical

specification editor must behave similarly to a computer aided design tool than to any of

the traditional text editors that are now popular. Such an editor would allow the user

to move, alter, add, and delete specification icons through the use of a mouse, a graphics

pad, or any similar input device. The editor would also allow a user to create connections

between nodes by simply pointing to the two nodes that he or she wishes to join. The

editor would also perform continuous type checking within the specification, refusing to

allow connections that are not defined within the language. This continuous type checking

would provide the user real-time feedback about the validity of a particular specification,

thereby increasing programmer productivity and increasing specification accuracy.

Unfortunately, a full implementation of this editor is beyond the scope of this re-

search. The satisfaction of this objective lies in the successful graphical specification editor.

5-60

5.7.6 Mechanisms to Facilitate and Encourage Software Component Reuse This.

objective, too, cannot be satisfied by the language development alone, but relies on the

eventual implementation of the graphical specification environment. The data abstraction

facilities of the language provide the language modularity necessary to construct reusable

components and the categorization of the Refine primitive operations by data type provides

an elementary foundation for the construction of a component librarian system. Neither

the data abstraction facilities nor the operation categorization, however, provide the re-

trieval facilities or the user help facilities necessary to actually encourage component reuse.

The satisfaction of this objective lies in the implementation of the component librarian,

discussed earlier, which would automatically categorize and then retrieve existing software

components based on a user's particular need.

5.7.7 Mechanisms to Facilitate Data Encapsulation The early categorization of the

primitive language operations by data type provides an elementary foundation for the bind-

ing of data types and their associated operations. The real associations between data types

and their operations would be forged in the construction of the toolkits which would be

partitioned by data type, each partition containing the appropriate operations. Data en-

capsulation, however, also typically implies the protection of data through the restriction

of data access to a limited set of operations. While this graphical specification language

discourages the manipulation of a data type's internal representation by only displaying a

top level view of each instance of a data type, the language provides no protection against

access of internal data structures. This objective, then, also waits on an environmental

implementation, specifically a librarian function, for partial satisfaction. Unfortunately,

5-61

because data protection facilities are unavailable in the Refine system underlying the graph-

ical language, such facilities would be extremely difficult to implement within the graphical

specification language.

5.7.8 Overall Language Assessment Not surprisingly, the objectives associated with

language clarity were met while the objectives associated with language utility were not

satisfied because of their dependence on a supporting graphical specification environment

which does not exist at this time. Nevertheless, facilities were provided within the lan-

guage to support the tools that would eventually satisfy the language utility objectives.

Overall, this graphical specification language has fulfilled, or will potentially fulfill, all of

the objectives initially established to ensure the usefulness of the language.

5-62

VI. Conversion Heuristics for Existing Graphical Requirements

Analysis/Specification Notations

Although this graphical specification language provides an excellent tool for creating,

maintaining, and understanding the intended behavior of new software systems, there has

been no discussion up to this point about the creation of tools designed to ease the main-

tenance of the enormous number of existing systems which have been documented using

traditional requirements analysis and specification notation, such as dataflow diagrams

(DFDs), entity relationship diagrams (ERDs), and state transition diagrams (STDs). This

chapter addresses this need to support the maintenance of existing systems as well as the

creation of new systems. The chapter discusses three existing graphical programming no-

tations, DFDs, ERDs, and STDs, and shows how each notation can be converted into the

developed graphical specification notation. The reader should be aware that the conversion

processes described in this chapter are informal heuristics meant to guide the conversion

process. Because of the numerous dialects in use for each of these graphical notations, it

is extremely difficult to develop a general conversion heuristic; one should not hesitate to

tailor these heuristics for a particular particular.

6.1 Dataflow Diagram Conversion

Data flow diagrams have long been a popular method for facilitating requirements

analysis aind documenting high level software system sperific-ations. Data flow diagrams

are popular because, as Sommerville points out, "They represent one way of describing

a system and have the advantage that they are intuitive and readily understood without

6-1

special training" (17:234). BecausL both data flow diagrams and the giaphical specification

language are based on the concept of data flow graphs, the two notations have a great deal

in common, and, therefore, it should be relatively easy to convert between notations.

The graphical specification notation is intentionally very similar to the data flow

diagram notation, although the existence of Le veral dialects of data flow notation (17:235)

hampers any attempt at general consistency between the notations. In the version of DFD

notation circles discussed earlier, are used to repre, -: transformation operations where a

set of inputs is transformed into a set of outputs. R. tangles represent data stores; circles

represent system input or output; arrows represent the direction of data flow in the system,

and the words "and" and "or" "are used 'o !ink data flows when more than one data flow

may be input or output from a transformat ion centre" (17"235).

One important point to make here is that the proposed graphical specifications con-

tain much more detailed information than DFDs. This difference bet veen the information

content of the two notations basically eliminates any hope of conversion from a formal

graphical specification to DFD formal graphical specifications can preseive all of the infor-

ination contained in the DFD because of the graphical specification's more sophisticated

data modeling techniques. One rule of thumb that should be adhered to in the conver-

sion from graphical specification to DFD is that any node in the graphical specification

containing a primitive specification operation, e.g. a set operation, a numeric operation,

etc., becomes a primitive node in the DFD. In other words, no node containing a prim-

itive operation will be further decomposed in the conversion from graphical specification

to DFD.

6-2

J
The conversion of the DFD transformation representation into the graphical function

representation is as simple as exchanging a circle for a rounded rectangle and vice versa.

Because DFD notation does not have a representation for any explicit variables (due to

the high level nature of DFD notation), no variables would appear in the conversion from

DFD to specification notation and all such variables would disappear in the conversion from

specification to DFD notation. The one exception to the elimination of explicit variables

would be in the case of input/output (I/O) variables. In this case, the conversion from

DFD to specification notation would create argument variables (a rectangle with a right

pointing arrow) for each input circle encountered in the DFD and would create ports on

the stop signal for all output circles. In the conversion from the specification to the DFD,

all I/O variables and stop symbol ports would be replaced with circles.

In DFDs, the rectangle represents a data store, a persistent, non-sequential storage

area for homogeneous data. When described in this manner, the data store sounds very

similar to a set (non-sequential, homogeneous) of objects (persistent). Since there is no

direct counterpart for the data store in specification notation, data stores will be converted

into sets of objects during the conversion into specification notation. In the conversion from

specification notation into DFD notation, the situation is more difficult. Since the graphical

specification formulation is necessarily more detailed than a typical DFD and since a set of

objects is a perfectly valid data structure in the graphical specification notation, there is

no way to differentiate between the sets that had originally been data stores and the sets

that have been added since the converson froMri DFD to pcfication. -.. . -t

At the risk of introducing too much detail into the derived DFD, the conversion process

shall create a data store in the derived DFD for every set of objects in the graphical

6-3

specification. Since sets of objects and data stores are used for roughly the same purpose,

this approach seems like a reasonable trade-off in order to keep the conversion process as

simple as possible.

The use of the keywords "and" and "or" to indicate associations between data flows

can be roughly approximated in the graphical specification language. Although not explic-

itly discussed up to this point, the reader might have already realized that if multiple arcs

originate from a node, data is emitted on all arcs simultaneously upon emergence from a

node, a situation which is analogous to "and" association in DFD notation. "Or" associa-

tion, on the other hand, is handled by the passing of a boolean value to a selector which

then passes control flow to the proper node. With these correspondences in mind then, the

conversion process from DFD notation to specification notation would entail removing all

"and" associations from data arcs and replacing all "or" associations with an additional

arc originating at the same node as the data arcs and terminating at a selector Y.ode. The

selector node then sends one control signal for each alternative to the proper terminat-

ing node. The conversion from graphical specifications to DFDs essentially reverses this

process; replace selector/coatrol signal constructions with "or"associations and then place

"and" associations on all other data arcs that originate from nodes which have multiple

output arcs.

Finally, st irt and stop symbols in graphical specifications must be handled. In the

conversion from DFD to graphical specification, the DFD network can be traversed to find

the node or nodes which do not have incoming data flowa which originate froir any other

node. This node(s) is then the start of execution for the DFD and a start symbol may

be located with control signal(s) emanating from the start symbol and terminating at the

6-4

node(s). The stop symbol is handled similarly; a node(s) is found that does not have any

data arcs originating from it that terminate at anothei node. A stop symbol is then placed

on the graphical specification. If the node(s) has an arc the passes data out of the node,

then a corresponding arc is constructed in the graphical specification with an arc leading

from the node(s) to a port in the stop symbol. If the node(s) passes no data out of the

node, the a control signal is constructed from the node to the stop symbol.

In concise checklist format then, one possible heuristic for converting a DFD to a

graphical specification is:

* Replace rounded rectangles with circles

s Replace input circles with incoming data symbols and replace output circles with

ports on the stop symbol

a Replace data stores with sets of objects

@ Remove all "and" associations

* Replace all "or" associations with an additional data flow to an appropriate selector

node and appropriate control signals to the terminating nodes

Locate the start(s) of the DFD network and establish control signals originating at

the start symbol and terminating at the starting node(s).

e Locate the end(s) of the DFD network. If the end(s) do not pass data out of the

transform then construct a control signal from the end(s) to the stop symbol.

As an example of the use of this heuristic, the reader should consider the DFD shown

in Figure 6.1. This DFD depicts incoming data, "data-i", being sent to the process "proc-

6-5

1" and then, based on an evaluation by "proc-l", a transformation of "data-l" is either

sent to processes "proc-2" and "proc-3" as "data-2" and "data-3" ')r is sent to process

"proc-4" as "data-4". The results of the data transformations performed by the selected

process(es) are then passed out of the structure depicted in the DFD.

The graphical specification contained ;n Figure 6.2 was constructed by following the

steps of the heuristic just established. All rounded rectangles have been replaced with

circles and input and output circles or the original DFD have been replaced with incoming

data symbols and stop symbol ports respectively. The one "OR" association has been

replaced with a two way selector which selects the proper execution path based upon

an undefined set of conditions "cond-l" and "cond-2". The "AND" condition is simply

removed, indicating that either both "proc-2" and "proc-3" will be executed or "proc-4"

will be executed. Finally, start and stop symbols are established to indicate the starting

process, "proc-l", and stopping processes, "proc-2", "proc-3", and "proc-4".

6.1.1 State Transition Diagram Conversion State transition diagrams (STDs) can

basically be viewed as DFDs turned inside out: an arc in a DFD is represented as a node

in a STD and a node in a DFD (whether represented by rounded rectangles or circles)

is represented as an arc in a STD. Because ol their conceptual similarity to DFDs, the

conversion of STDs into graphical specification notation and vice versa should bear a

strong resemblance to the conversion process for DFDs.

The first step in the conversion process from the STD to the graphical specification

is the creation of one node in the graphical specification for every arc in the STD. These

nodes in the graphical specification will eventually contain the transition logic necessary

6-6

PROC-1
DATA-I DATA-2 DATA-5

CR *0DATA-3

PROC-3
DATA-6

DATA-4

PFOC:-4
DATA-?

Figure 6.1. Example Data Flow Diagram

6-7

1AI - PROC-

Figure 6.2. Graphical Specification of Example Data Flow Diaigram

to determine whether to perform a state transition and the processing logic to carry out a

state transition.

The next step in the conversion process is to group the newly created specification

nodes by their originating state. This step is important because it will determine which

state transition determination and processing nodcs must be called when the system is in

a particular state.

Finally, a STD usually represents a system or object of some sort that is going

through a series of state changes. An object in the graphical specification must then be

constructed to represent the system or object being represented in the STD. An graphical

specification object is chosen as the data structure to represent the I TD sy stein because

of the persistent nature of specification objects. Just as the system continues to exist

from transition to transition, a specification object continues to exist from transformation

to transformation. Also, the STD system is likely to be modeled through a collection

of highly diverse information; likewise, an object represents a collection of heterogeneous

information. Therefore, an object is a very appropriate data structure to model a STD

system.

The final step in the conversion process is to establish a large, multi-way selector in

the graphical specification. The state of the object should then be retrieved and handed

to the selector. The selector then passes a control signal to the node or nodes which are

responsible for determining the need for a state transition and for processing information

to make that state transition occur.

6-9

To summarize then, the steps in the heuristic for converting a state transition diagram

into a graphical specification are:

* Create one node in the graphical specification for every arc in the state transition

diagram and give each node a unique, meaningful name

" Group the nodes by their originating states

" Establish an object in the graphical specification to represent the system represented

in the state transition diagram

" Establish the mechanisms to retrieve the object's current state and pass this state to

a multi-way selector; the multi-way selector then activates the function or functions

responsible for determining the need for a state transition and for implementing that

transition if needed.

To demonstrate this process, the reader should consider the elevator system described

earlier. The state transition diagram for the elevator system is shown in Figure 6.3 (3).

The first step in the conversion process is to create nodes for every arc in the STD, in

this case 12 nodes. The second step is to group the nodes by the originating state of the

arcs they represent, a simple task in this case. The next step is to construct an object

to represent the system depicted in the STD, in this case an elevator. The final step is

to establish mechanisms to extract the state of the object and pass that state through a

multi-way selector so that the proper functions can be executed. The resulting graphical

specification is shown in Figure 6.4.

6-10

OSTOP

(
$ OP

Figure 6.3. State Transition Diagram for Elevator System

6.1.2 Entitj Relationship Diagram Conversion Entity relationship diagrams (ERDs)

represent, as the name suggests, relationships between different collections of data. There

is no restriction on the number of entities that may participate in such a relationship

and each entity may have an unlimitied number of attributes associated with it (20:30-32).

Since ERDs represent only data relationships, the conversion from ERDs to graphical spec-

ifications results only In the creation of graphical data structures; no graphical functions

will be created in the ERD conversion process.

The map data structure immediately comes to mind when searching for a graphical

representation for the ERD. Just as relations in ERDs depict associations between data

structures, maps in graphical specifications represent associations between diverse data

types. Although maps are primarily used for the representation of unary relations, the use

of a tuple as the returned data type facilitates the representation of the n-way relations

that may be encountered in ERDs. When depicting relationships, ERDs use straight lines

6-11

VSTOP DOWNS XIL UP W~.T WSIOP

*" AO j -a[VAI

to-CLE

1tW-666AT opt VATM

I I I-

SMT-MA

L 1'A

I I 0

-- 1

leading from the relation (a diamond) to the entity (a square) to represent the fact that

many such entities can participate in the same relation; ERDs use an arrowed line from the

relation to the entity to represent the fact that only one such entity may participate in each

such relation. This distinction between single or multiple participation in each relation can

be reflected in the map by returning either a value or a set of values, corresponding to the

use of the arrow and the straight line in ERDs respectively. Since the complete ERD is

simply a series of these relations, the graphical specification resulting from the conversion

will simply be a series of maps corresponding to each relation.

The ERD conversion process, then, starts with the creation of specification data

structures corresponding to the entities depicted in the ERD. The data structure corre-

sponding most closely to the ERD entity is the tuple since both maintain collections of

heterogeneous data aiid both.have an unlimited number of attributes or fields repectively.

Thus, the first step in the ERD conversion is to create tuples correspolding to each entity

in the ERD. Each field name in the tuple should correspond to an attribute of the entity.

Now that the entities are represented in the graphical specification notation, the

relationships between the entities can be encoded in the specification. As discussed earlier,

maps will be used to represent relations because of their similar characteristics. Because

relationships in ERDs are nondirectional, i.e. if entity A has a relationship with entity B,

then entity B also has that relationship with entity A, within the limitations of the single

or multiple entity participation described earlier, one map will be constructed for each

entity participating in a relation. This allows a query of the relation from the viewpoint

of any of the participating entities. Each map for a particular relation will have a domain

data type of one of the entity tuples constructed earliei and will have a range data type

6-13

ENT-3

ENT-I ENT-2

Figure 6.5. Example Entity Relationship Diagram

of a tuple with fields corresponding to each of the remaining entities participating in the

relation.

For example, consider the simple ERD shown in Figure 5.26. This ERD has only

one relation. Three entities participate in this relation. In order to convert this ERD into

graphical specification notation, the entities must first be represented by tuples. Three

tuples would be constructed: the first with fieids named attr-1-1 and attr-1-2, the second

with one field named attr-2-1, and the third with fields named attr-3- 1, attr-3-2, and attr-3-

3. The three tuple data types will be named ent-1, ent-2, and ent-3 respectively. The next

6-14

step is to construct maps representing the relation. Since the relation has three entities

participating, three maps are required. Since each map must have a domain data type

matching one of the participating entities, the first map will have a domain type of ent-1,

the second map will have a domain type of ent-2, and the third map will have the domain

type of ent-3. Finally the range types must be constructed. Three tuples are required:

one with fields set(ent-2), because there is no limitation and the number of entities that

may participate, and ent-3, since only one entity may participate; one with fields set(ent-1)

and ent-3; and one with fields set(ent-1) and set(ent-2). The notation "set(ent-X)" simply

denotes a set of ent-X. Finally, the maps must be associated with their proper range types.

The first map is associated with the first range type, the second map with the second type,

and the third map with the third type. Thus the resulting structure of the first map is:

9 Map 1

- Domain

• Ent-1

* Attr-1-1

* Attr-1-2

- Range

* Set(Ent-2)

. Attr-2-1

* Ent-3

* Attr-3-1

6-15

* Attr-3-2

• Attr-3-3

The other maps have corresponding structures. The reader should note however that

because of the data abstraction features of the graphical specification language that have

been discussed throughout this paper, this entire map data structure would appear as a

single rectangle labeled "Map-l" in graphical specification notation.

Concisely stated then, the heuristic for converting entity relationship diagrams into

graphical specification notation is:

* Create tuples for each entity in the ERD. Each tuple should have fields corresponding

to the attributes of its associated entity

* Create one map for every entity in every relation in the ERD. Each map for each

relation should have a different entity as its domain type.

* Construct the range tuples for each relation by creating fields for each entity in the

relation except one. If the arc connecting the entity with the relation is directed,

then the field type is simply the tuple already created to represent the entity. If the

arc is undirected, then the field type is a set of the taiples already constructed to

represent the entity.

9 Associate each map for each relation with its appropriate domain tuple. If a relation

has n entities participating, then the domain of the map should have one of those

entities and the range of the map should be a tuple composed of the n - 1 remaining

entities.

6-16

6.2 Assessment of Notation Conversion Heuristics

The notation conversion heuristics presented offer one possible way of building formal

specifications for existing systems using available system documentation. However, these

heuristics assume one particular dialect of each of the notations discussed; the heuristics

must Lc modified to handle other dialects. The development of a general conversion heuris-

tic is beyond the scope of this research effort. As a future step in the development of this

research area, these heuristics should be used as the foundation for a set of formalized

algorithms which would not only allow the conversion of a number of dialects of each of

these notations, but would also allow the automation of the conversion process.

6-17

VII. Conclusions and Recommendations for Further Research

7.1 Summary

The graphical specification language developed in this research represents a tool

that could significantly decrease the training time required to use formal specifications as

well as increasing the understandability and utility of formal specifications. Because this

language overcomes many of the obstacles that have hindered the widespread use of formal

specification for the development of software, this language could be a valuable vehicle for

promoting a wider use of formal specification methods in the software industry.

This graphical specification language was developed by first establishing a number

of objectives based upon expert opinions (7, 10, 11, 12) of the most critical elements

contributing to the clarity and utility of graphical languages. A preliminary graphical

specification language was then developed based on the SF specification language (4).

This preliminary language was used to develop the techniques necessary to decompose

a textual specification language as well as to develop symbologies to represent the key

concepts in the formal specification of software. The techniques and symbologies developed

during the initial graphical language construction were then applied in the development

of a more sophisticated graphical specification language based on the Refine specification

language. In addition to the language, a graphical specification environment was described

which would allow the user to specify and execute formal specifications within a graphical

framework.

7-1

7.2 C nclusions

A number of conclusions can be drawn from this research into the development of

graphical representations for formal specifications.

Graphical representations are viable alternatives to purely textual representation of

formal specifications. Graphical representations should have significant advantages

over textual specifications such as increased clarity and understandability and re-

duced training costs, but these benefits must be proven using a comprehensive set of

metrics on the implemented graphical specificaton environment, a task beyond the

scope of this effort.

,4 It is possible to implement a graphical specification system based upon the Refine

wide-spectrum language as a foundation. Such a graphical specification system will

dramatically improve the productivity of software engineers by retaining the advan-

tages of the program transformation lifecycle while alleviating the severe problems of

the clarity and understandability of the formal specifications upon which the program

transformation lifecycle is based.

Because of its emphasis on data types and operations, the language decomposition

method developed here are applicable in the development of a graphical representa-

tion for any well-defined textual formal specification language.

a The proposed conversion heuristics facilitate the creation of graphical formal spec-

ifications based on existing graphical program documentation. This finding is ex-

tremely important to the acceptance of any fundmentally new system such as this

graphical specification language because it allows a new user to begin creating formal

7-2

specifications for existing systems almost immediately using off-the-shelf documen-

tation.

* Because of their additional information content, graphical specifications tend to be

larger and more complex than existing graphical programming notations. Prelimi-

nary analysis and specification design using the simpler existing notations is still a

worthwhile exercise since it enables the specifier to gain a greater understanding of

the system before tackling the more complex graphical specification notation.

* The proposed graphical specification system architecture supports an incremental

implementation of this system. By following the implementation recommendations in

the following section, the system developer can deliver useful subsets of the graphical

specification environment to the user for evaluation, thereby enabling the developer

to make beneficial changes to the specification system before the system is completely

implemented.

7.3 Recommendations

Recommendations for further research emphasize the need to continue this effort

though the implemenitation and validation of the concepts developed in this thesis. The

logical continuation of this research would

* Implement the complete graphical specification environment as described in Section

5.7.

v Formalize the graphical notation conversion heuristics presented in Chapter 6.

7.3

* Establish a set of metrics to test and validate the graphical symbology used to rep-

resent formal specifications.

7.3.1 Graphical Specification Environment Implementation The graphical specifi-

cation environment to support this graphical language could be implemented in phases.

The environment should be implemented in the following order:

e Graphical Specification Editor

* Graphical Specification Interpreter

* Translator/Converter

* On-Line Help Facility

* Librarian

* Icon Editor

* Debugger

in order to ciisure that each phase of implementation produceb a fully functional and useful

tool that that can be used to test graphical specification concepts and can also be used to

encourage outside experimentation with these tools and concepts. Any workstation-class

computer supporting bit-mapped graphics, mouse interaction, and an event-driven envi-

ronment would be a suitable platform for the implementation of the graphical specification

environment. Both SunviewTM , a graphical user interface shipped with Sun workstations,

and X Windows, a non-proprietary graphical user interface developed at the Massachusetts

Institute of Technology, are excellent examples of the user environments that would ade-

quately support the development of the pioposed graphical specification environment.

7-4

7.3.2 Formalize the Graphical Notation Conversion Heuristics As stated earlier,

the proposed graphical nottiop conversioa heuristics handle only one particular dialect of

each of the graphical notations that were discussed. The construction of a general conver-

sion heuristic is beyond the scope of this effort. As part of a future research effort, the

conversion heuristics presented in Chapter 6 should be used as a foundation for the devel-

opment of formalized conversion algorithms which would not only facilitate the conversion

of a larger number of dialects, but would also allow the automation of the conversion

process.

7.3.3 Validation Metrics for Graphical Specification Systems Glinert (11) proposes

a set of metrics designed to evaluate the effectiveness of visual interfaces which could be

used to evaluate this language. Once the first phase of environment implementation is

complete, a set of metrics based on Ginert's work should be developed and administered

to determine the effectiveness of this graphical language. Since Glinert's metrics use ex-

tensive surveys after hands-on use of the visual interface, they are not of much use at this

point in the development of this graphical language. Before a graphical language like this

can be widely adopted, however, some measure of its effectiveness must be available to

justify the software industry's investment in such a tool. A set of metrics would also be

extremely valuable in detecting and correcting any language "features" which detract from

the effectiveness of the language.

All in all, a graphical specification language offers a significant improvement over tra-

ditional 6cftware development techniques. Such a language would build on the advantages

of using the program transformation development technique wlvile removing the obstacles

7-5

that prevent the technique's widespread use.

7-6

Appendix A. SF, Specification for the Library Control System

This appendix contains Berztiss's SF specification for the Library Control System

problem (3) discussed in Chapter 3.

SEGMENT Titles;

IMPORTED SIGNALS Add-title, Drop-title, Move-title;

EXPORTED SIGNALS Catalog-copy;

IMPORTED TYPE Author ENDTYPE;

TYPE Title :T(SUBSETS: INCAT,HASBEEN);

SECONDARY SETS- Subject-area: Area;

FUNCTIONS- title-text :T -> Text;

authors T ->Author-set;

subjects T ->Ares-set;

ENDTYPE;

EVENT Add-title(newcopy;book; t:Text; A:Author-set; S:Area-set);

PRECONDITIONS- not(member(book,T));

SETCONDITIONS- INCAT' = INCAT \union {book};

MAPCONDITIONS- title-text'(book) = t

authorsl(book) =A;
subjects'(book) S ;

SIGCONDITIONS- (Catalog-copy(newcopy ,book))ON;

ENDEVENT;

INTERNAL EVENT Reactivate(newcopy,book);

SETCONDITIONS- INCAT' = INCAT \union {book};

HASBEEN' = HASBEEN \union {book};

SIGCONDITIONS- (Catalog-copy(newcopy,book))ON;

ENDEVENT;

INTERNAL EVENT Drop-title(book);

SETCONDITIONS- INCAT' = INCAT - {book};

HASBEEN' =HASBEEN \union {book};

A-

ENDEVENT;

(* Transaction 1I*

TRANSACTION;

Q(T-min.now) :ON(Add-title(newcopy,book))OFF:

PROMPT (Add-title :newcopy ,book);

ENDTRANSACTIONS;

(* Transaction 2 *

TRANSACTION;

Q(T-min.now) :ON(Drop-title(book))OFF:Drop-title(book);

ENDTRANSACTION;

(* Transaction 3 *

TRANSACTION;

O(T-min.now) :ON(Move-title(newcopy,book))OFF:

Reactivate (nevcopy ,book);

ENDTRANSACTION;

ENDSEGMEN7;

A-2

SEGMENT Copies;

IMPORTED SIGNALS Catalog-copy;

EXPORTED SIGNAL Drop-title, Move-title, Add-title;

IMPORTED TYPE Title:T ENDTYPE;

IMPORTED TYPE Borrower:B ENDTYPE;

TYPE Copy : C;

FUNCTIONS- book-id: C -> T;

borrowed: C ->Boolean(false);

last-out: C ->B(nil);

books-out: B ->Integer(O);

limit: ->Integer(O);

ENDTYPE;

EVENT Set-limit(k:Integer);

MAPCONDITIONS- limit' = k

ENDEVENT;

EVENT Check-copy(newcopy,book);

SIGCONDITIONS- member (book, INCAT) -

(Cat alog' copy (newcopy ,book))ON;
member(book ,HASBEEN) ->

(Move-title(newcopy,book))ON;

not (member (book ,T)) ->

(Add-title(newcopy ,book))ON;

ENDEVENT;

INTERNAL EVENT Add-copy(newcopy,book);
SETOONDITIONS- C' = C \union {newcopy};

MAPCONDITIONS- book-id'(newcopy) =book;

ENDEVENT;

EVENT Remove"'copy(copy);
PRECONDITIONS- member(copy,C);

not (borrowed(copy));

SETCONDITIONS- C' = C - {copy} ;
SIGCONDUTTONS- card({x! boo3C'id'(x) = ook-'id(copy)}) =0 -

(Drop-title(book-id(copy)))N;

ENDEVENT;

EVENT Check-out(copy,borr:B);

A-3

PRECONDITIONS- member(copy,C);
not (borrowed(copy));
books-out(borr) <limit;
MAPCONDITIONS- borrowed' (copy) =true;
last-out'(copy) =borr;
books-out'(borr) =books~out(borr) + 1;
ENDEVENT;

EVENT Checkin(copy,borr:B);
PRECONDITIONS- member(copy,C);
last-out(copy) = borr;
MAPCONDITIONS- borrowed' (coy) =false;
books-out'(borr) =books-out(borr) -1;

ENDEVENT;

(Transaction I *
TRANSACTION;
Q(T-min.now) :ON(Catalog-copy(newcopy,book))OFF:
Add-copy(newcopy ,book);
ENDTRANSACTION;

ENDSEGMENT;

A-4'

Appendix B. SF Specification for the Elevator Control System

This appendix contains Berztiss's SF specification for the Elevator Control System

problem (4) discussed in Chapter 3.

SEGMENT Elevator;

IMPORTED SIGNALS Activate-elevator, Add-to-agenda, Move-idle;

SENSOR SIGNALS Next'floor-sensor;

MECHANISMS Door-open, Alarm, Light, Uplight, Dlight, Motion-up, Motion-down;

IMPORTED TYPE Time: T ENDTYPE;

IMPORTED TYPE Time-interval: TI ENDTYPE;

TYPE Elevator: E;

SECONDARY SETS- S = {"idle", "up", "uphalt", "upstop", "down",
"dhalt", "dstop"};

Floor: F = Integer;

FUNCTIONS- state: E -> S;
lowfloor: E -> F;
highfloor: E -> F;
clock: E -> T;
delay: E -> TI;
agenda: EXF -> Boolean (false);

SENSORS- floor-now: E -> F;
nullweight: E -> Boolean;

ENDTYPE;

EVENT IniLidlizeelevatore; low, high: F; interval: Ti);

(* Parameter interval indicates the time for which the elevator door is
to be kept open after it was last opened or a person stepped through
it *)

B-1

MAPCONDITIONS- state'(e) = "idle";
lowfloor'(e) =low;
highfloor'(e) high;
delay'(e) =interval;

ENDEVENT;

INTERNAL EVENT Activate-elevator(e; x:)

(Initiated by the dispatcher via signal Activate-elevator. *

MAPCONDITIONS- state'(e) = x

clock' (e) = T.now;

SIGGONDITIONS- (Door-open) ON;
x = 'uphalt" ->(Uplig~ht(floor-now(e)))OFF;
x = "dhalt" ->(Dlight(floor-now(e)))OFF;
(process-halt (e))ON;

ENDEVENT;

INTERNAL EVENT Enter-halt(e);

MAPCONDITIONS- agenda'(e, floor-now~e)) =false;
not(nullweight(e)) ->clock'(e) = T.now;

SIGOONDITIONS- not (nullweight (e))~-
BLOCK

(Door-open(e))QU;
state(e) = "uphalt" -

(Uplight(floor'now(e)))OFF;
state(e) ="dhalt"- _>

(dlight (floor-now(e))) OFF;
(Light(e, floor-ow(e)))OFF;
(Process'halt(e))EN;

ENDBLOCK;
nullweight(e) -> (Idle-elevator(e))ON;

ENDEVENT;

EVENT Press-button(e; floor: F);

(Only floors in the direction of travel of the elevator ma be aidded
to the agenda *

13-2

PRECONDITIONS- state(e) ="up" V state~e) ="uphalt" -

floor > floor-now(e);
state(e) = "down" V state(e) = "dhalt" -

floor < floor-now(e);
not(member(state(e), {"lidle" , "upstop" , "dstop"}));

l4APCONDITIONS- agenda'(e, floor) =true;

SIGCONDITIONS- (Light(e, floor))aN;

ENDEVENT;

INTERNAL EVENT Add-to-agenda(e; floor: F);

(Initiated by the dispatcher *)

MAPCONDITIONS- agenda'(e, floor) = true;

ENDEVENT;

INTERNAL EVENT Process-halt(e);

SIGOONDITIONS- Allop(-;{not(agenda(e, x))lowfloor(e) <= x <=
highfloor(e)} -> (Idle-elevator(e))ON;

Allop(V;{agenda(e, x)Ilowfloor(e) <= x <=

highfloor(e)} -> (Set-inrnotion(e))ON;

ENDEVENT;

INTERNAL EVENT Passing-sensor(e);

MAPCONDITIONS- agenda(e, floor-now(e)+1) ->state'(e) = "uphalt";
agenda(e, floor-now(e)-l) ->state'(e) ="dhalt";

SIGOONDITIONS- agenda(e, floor-now(e)+1) ->(Motion-up(e))OFF;

agenda(e, floor-now(e)-1) ->(Motion-down(e))OFF;
agenda(e, floor'now(e)+l)Vagenda(e, floor-now(e)-l) -

(Enter'halt(e))ON;

ENDEVENT;

EVENT Stop-elevator(e);

MAPCONDITIONS- state(e) ="down" V state(e) = "ldhalt" -

B3-3

state'(e) "dstop";
state(e) = "up" V state(e) = "uphalt" -

state'(e) =usopt

SIGCONDITIONS- state(a) = "down" ->(Motion-down(e))OFF;
state(e) ="up" -> (Motion-up(e))OFF;

(Alarm(e))aN;
(Door-open(e))ON;

ENDEVENT;

EVENT Reactivate'elevator(e);

MAPCONDITIONS- state' (e) = "upstop" ->state(e) ="uphalt";

state'(e) ="dstop" ->state(e) ="dhalt";

SIGCONDITIONS- (Alarm(e))OFF;
(Enter-halt(e))ON;

ENDEVENT;

INTERNAL EVENT Idle-elevator(e);

MAPCONDITIDNS- state'(e) = "idle";
AiJlop(-;{not(agenda'(e,x))Ilowfloor(e) <= X <=

highfloor(e)});

SIGCONDITIONS- Allop(- ;{(Light(e,x))OFFtlowfloor(e) <= x <=
highfloor(e)});

(Door-open(e))OFF;

ENDEVENT;

INTERNAL EVENT Move-idle(e; floor: F);

(Initiated by the dispatcher *)

MAPCONDITIONS- agenda'(e, floor) = true;
floor > floor-now(e) ->state'(e) = "uphalt";
floor < floor-now(e) ->state'(e) = "dhalt";

SIGGONDITIONS- (Set'in'motion(e))ON;

ENDEVENT;

B3-4

EVENT Update'-clock(e);

(Initiated by breaking a light beam across the door of the elevator or
by some similar device *

MAPOONDITIONS- clock'(e) =T.now;

ENDEVENT;

EVENT Open-door(e);

(This event is required for people to get out who somehow find
themselves in an idle elevator. Raising the flag Process-halt
ensures that the opened door will ultimately close again. *

!APCONDITIONS- clock'(e) = T.now;

SIGCONDITIONS- (Door-open(e))ON;
(Process-halt(e))ON;

ENDEVENT;

TRANSACTION;

Q(T.NOW): Ol(Activate-elevator(e))OFF:Activate-elevator(e);

ENDTRANSACTION;

TRANSACTION;

Q(T.now): ON(Add-to-agenda(e,floor))OFF: Add-toagenda(e,floor);

ENDTRANSACTION;

TRANSACTION;

Q(T.now): ON(Move-idle(e,floor))OFF: Move-idle(e,floor);

ENDTRANSACTION;

T S A ('TnA1

Q(T.now): ON(Enter-halt(e))OFF: Enter-halt(e);

ENDTRANSACTION;

B-5

TRANSACTION;

(The delay is to give passenge-rs time to press destination buttons *

0(clock(e)+delay(e)): ON(Process-halt(e))OFF: Process-halt(e);

ENDTRANSACTION;

TRANSACTION;

Q(T.now): ON(Set-in-nmotion(e))OFF: Set-inmotion(i);

ENDTRANSACTION;

TRANSACTION;

Q(T.now): ON(Next-floor-sensor(e))OFF: Passing-sensor(e);

ENDTRANSACTION;

TRANSACTION;

cQ(T.now): ON(Idle-elevator(e))OFF: Idle-elevator(e);

ENDTRANSACTION;

END SEGMENT;

Appendix C. Graphical SF Specification of the Elevator Control System

This appendix contains the formal specification for the Elevator Control System

problem (4) using the SF-based graphical specification langLage developed in Chapter 3.

C-1

Figure 0.1. Elevator Control System Segment Diagram

0-2

E TI

F

Figure C.2. Graphical Specification of Initialize elevator Event

SProcest-hal

Figure C.3. Graphical Specification of Activate elevator Event

C-3

Figure .4. Graphical Specification of Enter halt EventU n\

Figure C.5. Graphical Specification of Press button Event

C-4

Adrbloinda

E F

Figure C.6. Graphical Specification of Add to agenda Event

"~eln-motbon

Figure C.7. Graphical Specification of Process halt Event

C- 5

Enter-bgt

Wb n-dwn

Figure C.8. Graphical Specification of Passing sensor Event

Sp'dedor)'moohm "-

Figure C.9. Graphical Specification of Stop elevator Event

C-6

Enter"I't

E

Figure C.10. Graphical Specification of Reactivate elevator Event

-oropen

Figure CAL1 Graphical Specification of Idle elevator Event

C-7

E

Figure C.12. Graphical Specification
of Move idle Event

Figure C.13. Graphical Specification of Update clock Event

C-8

(
Open-doo

E

Figure C.14. Graphical Specification of Open door Event

AcIvatssabr Tnw AcIvate-suIV r

Figure C.15. Graphical Specification of Transaction 1 (Activate elevator)

C-9

-EF

F~igure C.16. Grapheal Specification of Transaction 2 (Add to 19:eidall

Figlire 0..17. Graphicu1 Specification of Transaction 3 (M 4ove idle)

Enter'lsf Do @o Enter,"wm

Figure C.18. Graphical Specification of Tra nsaction 4 (Enter halt)

Figure 0.19. Graphical Specification of Transaction 5 (Process halt)

C-l1

Figure 0.20. Graphical Specification of Transaction 6 (Set in motion)

Nextihborsehsor 41Ho ex fkbor-sM

Figure 0.21. Graphical Specification of Transaction 7 (Passing sensor)

C- 12

Figure 0.22. Graphical Specification of Transaction 8 (Idle elevator)

C- 13

Appendix D. Refine Primitive Operations Categorized by Operand Data Type

This appendix contains Refine's primitive operations categorized by the operand

types of the operations.

* Numbers

- Addition

- Subtraction

- Multiplication

- Division

- Integer Division

- Integer Remainder (Modulo)

- Integer to Real Coercion

- Equality

- Greater Than

- Greater Than or Equal To

- Less Than

- Less Than or Equal To

s Characters

- Equality

- Greater Than

D-1

- Greater Than or Equal To

- Less Than

- Less Than or Equal To

e Bouleans

- Negation

-- Cnjunction

- Disjunction

- Implication

- Ordered Conjunction

Ordered Disjunction

- Universal Quantification

- Existential Quanti!'eation

- Nondetermiiiistic Choice

- Equality

* Symbols

- Symbol To String Coercion

- Equality

* Sets

- Size

D-2

- Arbitrary Element

- Element Addition

- Element Deletion

- Union

- Intersecton

- Set Difference

- Filter by a Predicate

- Reducion by an Operation

- Set to Sequence Coercion

- Empty

- Membership

- Subset

- Equality

Sequences

- Size

- n-th Element

- First Element

- Last Element

- Subsequence

- Following Subsequence

D-3

- Assignment of n-th Element

- Insertion as n-th Element

- Append an Element

- Prepend an Element

- Delete the n-th Element

- Reverse

- Image Under a Map

- Domain

- Range

- Concatenate

- Filter by a Predicate

- Reduction by an Operation

- Sequence to Set Coercion

- Sequence to Map Coercion

- Empty

- Membership

- Equality

e Strings

- Greater Than

- Greater Than or Equal To

D-4

- Less Than

- Less Than or Equal To

* Tuples

- Field Retrieval

- Field Assignment

- Equality

* Maps

- Size

- Filter by a Map

- Image

- Domain

- Range

- Closure

- Composition

- Inverse

-- Map t: Binary Relation Coercion

- Empty

- Equality

o Binary Relations

D-5

- Image

- Domain

- Range

- Closure

- Composition

- Transitive Closure

Objects

- Creation

- Destruction

- Attribute Assignment

- Attribute Retrieval

D-6

Appendix E. Refine Primitive Operations Categorized by Operation Characteristics

This appendix contains a listing of Refine's primitive operations categorized con-

ceptual similarities. If multiple primitive operations are grouped together under a single

operation heading, a listing of the possible operand types follows the operation heading.

e Simple Assignment

- Numbers

- Characters

- Booleans

- Symbols

- Sets

- Sequences

- Strings

- Tuples

- Maps

-- Binary Relations

- Objects

a Addition

Numbers

- Sets (Element Addition)

E-I

- Sequences (Concatenation)

9 Subtraction

- Numbers

- Sets (Element Deletion)

- Sets (Set Difference)

e Multiplication

* Division

* Integer Division

* Integer Remainder (Modulo)

a Integer to Real Coercion

9 Equality

- Numbers

- Characters

- Booleans

- Symbols

- Sets

- Sequences

- Tuples

- Maps

E-2

9 Greater Than

- Numbers

- Characters

- Strings

* Greater Than or Equal To

- Numbers

- Characters

- Strings

* Less Than

- Numbers

- Characters

- Strings

9 Less Than or Equal To

- Numbers

- Characters

- Strings

* Symbol to String Coercion

* Negation

e Conjunction

E-3

* Ordered Conjunction

e Disjunction

* Ordered Disjunction

* Implication

* Universal Quantification

* Existential Quantification

* Size

- Sets

- Sequences

- Maps

* Arbitrary Element

- Booleans

- Sets

* Union

e Intersection

* Filter by a Predicate

-- Sets

- Sequences

- Maps

E-4

" Set to Sequence Coercion

* Subset Test

• Empty Test

- Sets

- Sequences

- Maps

" Membership

" n-th Element

" First Element

" Last Element

" Subsequence

" Rest of Sequence

* Assign n-th Element

" Insert at n-th Position

" Append Element

" Prepend Element

" Delete n-tL Element

* Reverse

" Image

E-5

- Sequences

- Maps

- Binary Relations

e Domain

- Sequences

- Maps

- Binary Relations

* Range

- Sequences

- Maps

- Binary Relations

Sequence to Set Coercion

@ Map Coercion

- Sequences

- Binary Relations

e Field Retrieval

- Tuples

- Objects

E-6

o Field Assignment

- Tuples

- Objects

* Closure

- Maps

- Binary Relations

Composition

- Maps

- Binary Relations

* Inverse

a Map to Binary Relation Coercion

Transitive Coercion

E-7

Appendix F. RefineTM Specification for the Library Control System

This appendix contains the Refine specification for the Library Control System as

described in (18).

#1

Berztiss's Library System in Refine

This file implements Alf Berztiss's library system
as described in SEI document #SEI-SM-8-1.O, "SF Specification:
A Library System"

' These forms should appear at the beginning of tiles containing
' REFINE source code

in-package("RU")
in-grammar('user)

% Establish the foundation for the library world

var LIBRARY-WORLD-OBJECT: object-class subtype-of user-object

' Now define the objects in the library's world
var BOOK: object-class subtype-of library-world-object
var USER: object-class subtype-of library-world-object

' Require that every non-identical instance of any of the classes have
' a unique name
form DECLARE-LIBRARY-UNIQUE-NAMES-CLASSES

unique-n-mes-class (------------, Wre

unique-names-class ('user, true)

' Define the attributes of a book
var BOOK-OUT: map(book, boolean) = {II}
var ON-SHELF: map(book, boolean) {II}
var TITLE-OF-BOOK: map(book, string) - {II}

F-i

var AUTHOR-OF-BOOK: map(book, string) = {I }
var SUBJECT-OF-BOOK: map(book, set(string)) = {I }
var LAST-CHECKED-OUT-BY: map(book, string) = {I]"

% Define the attributes of a user
var CUSTOMER: map(user, boolean) { I}
var STAFF: map(user, boolean) = {II}
var USER-NAME: map(user, string) = {II}

% Library maintenance operations
rule Add-Book-To-Library(author : string,

title : string,
subject : set(string))

If there's not already a book with this title
. (to guarantee unique titles)
empty({ b I (b: book) book(b) & title--of-book(b) = title }) -- >

h Create a new book object
let (new-book: book = make-object('book))
% And set the attributes of the book

author, of-book(new-book) <- author;
title-of-book(new-book) <- title;

subject-of-book(new-book) <- subject;

on-shelf(new-book) <- true;

book-out(new-book) <- false

X Assumes that every book has a unique title
rule Remove-Book-From-Library(book-title : string)

% If a book of this title exists
empty({ b I (b: book) book(b) & title-of-book(b) book-title }) -- >

'4 Find the book with this title
let (book-to-delete: book = arL({ b I (b:book) book(b) &

title-of-book(b) book-title }))
% And delete it
erase-kb-object(book-to-delete)

rule Add-User(users-name : string, on-staff : boolean)
% If there does not already exist a user with this name
X (to guarantee unique names)
empty({ u I (u: user) user(u) & user-name(u) = users-name }) -- >

% Then create a new user
let (new-user: user = make-object('user))
% And set the user's attributes
set-attrs(new-user, 'user-name, users-name,

'staff, on-staff,
'customer, "on-staff)

F-2

rule Remove-User(userv-name :string)
SIf there really does exist a user with this name
empty({ u I (u: user) user(u) & user-name(u) = users-name } -

% Theni find the user with this name
let(user-to-delete: user

ab u I(u: user) user(u) & user-name(u) = users-name}))
XA And delete that user
erase-kb-object(user-to-delete)

rule Oheck-Out-Book(whos-asking: string,
users-name: string,
which-book: string)

Z If there is a user with the name of whos-asking
empty({ u I(u: user) user(u) & user-name(u) =whos-asking }) &
'And if there is a user with the name of users-name
empty({ u I (u: user) user(u) & user-name(u) =users-name }) &
% And if there is a book of the title which-book
Thmpty({ b I(b: book) book(b) & title-of-book(b) = which-book 1)--

'Then if Phos-asking is on the staff
staff(arb(u I (u: user) user(u) & user-name(u) = whos-asking})) &
'% And if thv requested book is on the shelf
on-shelf(arb(b I(b: book) book(b) &

title-of-book(b) = which-book 1))--
'Then find thia book with the title of which book

l.et(boo-k-to-check-out: book =arb({L b I (b: book) book(b) &
title-of-book(b) = which-book}))

'And check the book out
set-attrs(book-to-check-out, 'on-shelf, false,

'book-out, true,
'last-checked-out-by, users-name)

rule R~eturn-Book(whos-asking: string, which-book: string)
% If there is a user with the name of whos-asking

empty({ u I (it: user) user(u) & user-name(u) = whos-asking }) &
'And if there is a book with the title of which-book
empty({ b I (b: book) book(b) & title-of-book(b) = which-book 1)->
%A Then if whos-asking is on the staff
staff(arb({ u I (u: user) user(u) & user-name(u) = whos-asking D)) &

'And if the book is checked out
book-out(arb({ b I(h: hook) book(h) A

title-of -book~b) =which-book D) -

%A Then find the book with the title which-book
let (book-to-be-returnied: book = arb({ b I (b: book) book(b) &

title-of-book(b) = which-book)

F-3

% And check the book back in

set-attrs(book-to-be-returned,

'on-shelf, true,

'book-out, false)

' Library printing functions

function PRINT-BOOK-SET(set-of-books: set(book)) =

if empty(set-of-books)

then format(true, "This set of books is empty")

else enumerate b over set-of-books do

formatk true, title-of-book(b))

function PRINT-USER-SET(set-of-users: set(user)) =

if empty(set-of-users)
then format(true, "This set of users is empty")

else enumerate u over set-of-users do

format(true, user-name(u))

' Library queries
rule Books-On-Subject(which-subject: string)

' Return all books with subjects matching
' which-subject
true --> print-book-set({ b I (b: book) book(b) &

which-subject in subject-of-book(b) })

function Books-By-Author(which-author: string) =
% Return all books with an author matching
' which-author
print-book-set({ b I (b: book) book(b)

author-of-book(b) = which-author })

function Books-Checked-Out-By-User(whos-asking: string
users-name: string) =

' If there is a user with the name of whos-asking
if -empty({ u I (u: user) user(u) & user-name(u) = whos-asking }) &
And if there is a user with the name of users-name
empty({ u I (u: user) user(u) & user-name(u) = users-name }) &
And if whos-asking is on the staff

(staff(arb({ u I (u: user) user(u) & user-name(u) = whos-asking })) or
Or if the user is asking about him or herself

whos-asking = users-name)

% Then return all books that the user currently has checked out
then print-book-set({ b I (b: book) book(b) & book-out(b) &

users-name = last-checked-out-by(b) })

F-4

else format(true, "You are not authorized access to that information")

form CREATE-LIBRARY-USERS

add-user("gene", true);
add-user("mark", false);
add-user("rob", false)

form CREATE-LIBRARY-BOOKS

add-book-to-library("ritchie", "the c programming language",

{"programming", "computer science"});
add-book-to-iibrary("silberschatz", "operating system concepts",

{"operating systems", "computer science"});

add-book-to-library("korth", "database system concepts",

{"database", "computer science"})

F-5

Appendix G. Graphical Specification for the Library Control System

This appendix contains the formal specification for the Library Control System as

described in (18) using the Refine-based graphicai specification language developed in

Chapter 4.

G-1

~- - ----------

00

I I

flfE-CF-OOK

TITLE-

Figure G.1. Graphical Formulation of the Add-Book Function

Figure G.2. Graphical Formulation of the Rel-Dove-Book Function

G-3

ME Z U -SET-1

- - - - -- - - -- - --- --

EZ~IZ1Iv(DKI 4 H-
AND T 9F

I I T
USE /S-E-

Al -------------
/

M MALS
-

FigureG.3. raphial Fomulaton ofthe Ceck-OTokuctn

MGNWI ?

+ 0 J

Figure GA Graphical Formulation of the Add- Book-W'Aith-Title Function

G-5

Figure G.5. Graphical Formulation of the Add-User-With-Name Function

G-6

I WH OS-ASKMG KO1mmwlT-

T

U
0

------- -- ----
W,"-Bslf 0

Figre .6.Grahicl ormlaton f te etun-Bok uncio

G40

Figure G.7. Graphical Formulation of the Books- by-Author Function

G-8

0-99

MESj~J 11 - -0-

Figure G.9. Graphical Formulation of the Print-Book-Set Function

G-10

771-

Fi

Figure 0.10. Graphical Formulation of the Add-User Function

G-11

F

Figure GAL1 Graphical Formulation of the Remove-User Function

G-12

Appendix H. RefineTM Specification for the Elevator System

This appendix contains the Refine specification for the Elevator Control System as

described in (11).

#11

Berztiss's Elevator System in Refine
This file implements Alf Berztiss's elevator system
as described in SEI document #SEI-SM-8-1.O, "SF Specification:
An Elevator Controller"

1I#

h These forms should appear at the beginning of files containing
% REFINE source code

in-package("RU")
in-grammar('user)

% Establish the foundation for the elevator world
var ELEVATOR-WORLD-OBJECT: object-class subtype-of user-object

% Now define the objects in the elevator's world
var ELEVATOR: object-class subtype-of elevator-world-object

' Require that every non-identical instance of any of the classes have
' a unique name
form DECLARE-ELEVATOR-UNIQUE-NAMES-CLASSES

unique-names-class('elevator, true)

Declare the attributes of an elevator
var STATE: map(elevator, symbol) = {II}
var CURRENT-FLOOR: map(elevator, integer) = {!}
var SCHEDULE: map(elevator, set(integer)) = {I }

var ALARM: map(elevator, boolean) = U1}
var RESET: map(elevator, boolean) = {II}

]I-I

Establish the data structures for the elevator

driver
var event: object-class subtype-of elevator-world-object
var *events*: set(event) = {}

var EVENT-TIME: map(event, integer) {II}
var EVENT-TYPE: map(event, symbol) = {I }
var ELEVATOR-ID: map(event, symbol) = {I }
var FLOOR-ID: map(event, symbol) = {I }
var WHICH-FLOOR: map(event, integer) = {I }
var DIRECTION: map(event, symbol) = {II}

var clock: object-class subtype-of elevator-world-object
constant wall-clock: clock = make-object('clock)
var CLOCK-TIME: map(clock, integer) = {I wall-clock -> 0 I}

Establish the rules for transitioning between elevator
% states
. The states for the elevator system are described in
% Berztiss, p. 35

% Move from the idle state to the uphalt state
rule Start-Up(the-elevator : elevator)

empty({ f I (f : integer) f in schedule(the-elevator) &
f > current-floor(the-elevator) }) &
state(the-elevator) = 'idle -->
state(the-elevator) <- 'uphalt

% Move from the uphalt state to the up state
rule Move-Up(the-elevator: elevator)

empty({ f I (f: integer) f in schedule(the-elevator) &
f > current-floor(the-elevator) }) &
state(the-elevator) 'uphalt -- >

(state(the-elevator) <- 'up) &
(add-event(clock-time(wall-clock) + 2,

'floor-reached,
name(the-elevator),
0, 'dummy))

A Move from the uphalt state to the idle state
rule Up-To-Idle(the-elevator: elevator)

empty({ f I (f: integer) f in schedule(the-elevator)
f > current-floor(the-elevator) }) &
state(the-elevator) = 'uphalt -- >
state(the-elevator) <- 'idle

I[2

% Move from the up state to the uphalt state
rule Up-To-Halt(the-elevator: elevator)

empty({ f I (f: integer) f in schedule(the-elevator)&
f = current-floor(the-elevator) })&
state(the-elevator) = 'up -->
(state(the-elevator) <- 'uphalt)&
(schedule(the-elevator) <- schedule(the-elevator) less

current-floor(the-elevator))

% Move from either the up or uphalt states to the upstop state
rule Move-To-Upstop(the-elevator: elevator)

alarm(the-elevator) &

((state(the-elevator) = 'uphalt) or
(state(the-elevator) = 'up)) -- >

state(the-elevator) <- 'upstop

% Move from the upstop state to the uphalt state
rule Up-Reset(the-elevator: elevator)

reset(the-elevator) &

state(the-elevator) = 'upstop -- >

(alarm(the-elevator) <- false)
(reset(the-elevator) <- false)&
(state(the-elevator) <- 'uphalt)

7 Move from the idle state to the dhalt state
rule Start-Down(the-elevator: elevator)

Tempty({ f I (f: integer) f in schedule(the-elevator)&
f < current-floor(the-elevator)}) &

state(the-elevator)= 'idle -->

state(the-elevator) <- 'dhalt

Move from the dhalt state to the idle state

rule Down-To-Idle(the-elevator: elevator)
empty({ f I (f: integer) f in schedule(the-elevator)
f < current-floor(the-elevator)})
state(the-elevator) = 'dhalt -- >

state(the-elevator) <- 'idle

% Move from the dhalt state to the down state
re iMovG-Down(the-elovator: elevator)

empty({ f I (f: integer) f in schedule(the-elevator)&
f < current-floor(the-elevator)}) &
state(the-elevator) = 'dhalt -->

(state(the-elevator) <- 'down)

11-3

C add-event(clock-time(wall-clock) + 2,
'floor-reached,
name(the-elevator),
0, 'dummy))

% Move from the down state to the dhalt state
rule Down-To-Halt(the-elevator: elevator)

empty({ f I (f : integer) f in schedule(the-elevator) &
f = current-floor(the-elevator)}) &
state(the-elevator) = 'down -- >

(state(the-elevator) <- 'dhalt) &

(schedule(the-elevator) <- schedule(the-elevator) less
current-floor(the-elevator))

% Move from either the down or dhalt states to the dstop state
rule Move-To-Dstop(the-elevator: elevator)

alarm(the-elevator) &
((state(the-elevator) 'down) or
C state(the-elevator) = 'dhalt)) -- >

state(the-elevator) <- 'dstop

% Move from the dstop state to the dhalt state
rule Down-Reset(the-elevator: elevator)

reset(the-elevator) &
state(the-elevator) = 'dstop -- >

C reset(the-elevator) <- false) &
C alarm(the-elevator) <- false)&
C state(the-elevator) <- 'dhalt)

% Now establish the mechanism to move the elevator from state
% state
rule Check-State(the-elevator: elevator)

true -- >

(state(the-elevator) = 'idle -- >

(start-up(the-elevator)) &
(start-down(the-elevator))) &

(state(the-elevator) = 'uphalt -- >

(move-up(the-elevator)) &
(up-to-idle(the-elevator)))&

(state(the-elevator) = 'up -- >

(up-to-halt(the-eevator)) &
(move-to-upstop(the-elevator))) &

C state(the-elevator) = 'upstop -- >

(up-reset(the-elevator))) &
(state(the-elevator) = 'dhalt -- >

H-4

(move-down(the-elevator))&
(down-to-idle(the-elevator)))&

(state(the-elevator) = 'down -->

(down-to-halt(the-elevator)) &
(move-to-dstop(the-elevator))) &

(state(the-elevator) = 'dstop -- >

(down-reset(the-elevator)))

.Establish a method of creating and initializing an elevator
rule Add-Elevator(elevator-id: symbol)

true -->

(let (new-elevator: elevator = make-object('elevator))
name(new-elevator) <- elevator-id;
state(new-elevator) <- 'idle;
current-floor(new-elevator) <- 1;
schedule(new-elevator) <- {};
alarm(new-elevator) <- false;
reset(new-elevator) <- false)

% Establish a method of adding events to the system event list
rule Add-Event(the-time: integer,

the-type: symbol,
the-elevator: symbol,
the-button: integer,
the-direction: symbol)

true -->

let (new-event: event = make-object('event))
event-time(new-event) <- the-time;
event-type(new-event) <- the-type;
elevator-id(new-event) <- the-elevator;
which-floor(new-event) <- the-button;
direction(new-event) <- the-direction;
events <- *events* with new-event

rule Schedule-Summons(the-floor: integer,
the-direction: symbol)

true -->
(the-direction = 'up -- >

let (candidates: set(elevator) = { e I (e: elevator) elevator(e) &
((state(e) = 'up &

the-floor > current-floor(e))
or state(e) = 'idle) })

if -empty(candidates) then
let (min: elevator arb(candidates))

candidates <- candidates less min;

11-5

(enumerate e: elevator over candidates do
if (the-floor - current-floor(e) <

the-floor - current-floor(min)) then
min <- e);

schedule(min) <- schedule(min) with the-floor
else

let (tempset: set(elevator) = { e I (e:elevator) elevator(e) })
let (min: elevator = arb(tempset))

tempset <- tempset less min;
(enumerate e: elevator over candidates do

if size(schedule(e)) < size(schedule(min)) then
min <- e

schedule(min) <- schedule(min) with the-floor)&
C the-direction = 'down -- >

let (candidates: set(elevator) = { e I (e: elevator) elevator(e) &
(Cstate(e) = 'down &

the-floor < current-floor(e))
or state(e) = 'idle) })

if -empty(candidates) then
let(min: elevator = arb(candidates))

candidates <- candidates less min;
(enumerate e: elevator over candidates do

if (current-floor(e) - the-floor <
current-floor(min) - the-floor) then

min <- e);
schedule(min) <- schedule(min) with the-floor

else
let(tempset: set(elevator) = { e I (e: elevator) elevator(e) })

let (min: elevator = arb(tempset))
tempset <- tempset less min;
(enumerate e: elevator over tempset do

if (size(schedule(e)) < size(schedule(min))) then
min <- e);

schedule(min) <- schedule(min) with the-floor)

function Handle-Events(event-set: set(event)) =
while empty(event-set) do

let C the-event: event = arb(event-set))
C event-type(the-event) = 'dest-pressed -- >

let (the-elevator: elevator =

arb({e I (e: elevator) elevator(e) &
name(e) = elevator-id(the-event)}))

schedule(the-elevator) <- schedule(the-elevator) with
which-floor(the-event));

11-6

(event-type(the-event) = 'floor-reached -- >

let (the-elevator: elevator
arb({e I (e: elevator) elevator(e) &

name(e) = elevator-id(the-event)}))
(if state(the-elevator) = 'down then

current-floor(the-elevator) <-
current-floor(the-elevator) - 1

elseif state(the-elevator) = 'up then
current-floor(the-elevator) <-

current-floor(the-elevator) + I));
(event-type(the-event) = 'summons-pressed -- >

schedule-summons(which-floor(the-event),
direction(the-event)));

(event-type(the-event) = 'alarm-rung -- >

let(the-elevator: elevator = arb({ e I (e: elevator) elevator(e) &
name(e) = elevator-id(the-event)}))

alarm(the-elevator) <- true);
(event-type(the-event) = 'elevator-reset -- >

let (the-elevator: elevator arb({ e I (e: elevator) elevator(e) &
name(e) = elevator-id(the-event)}))

reset(the-elevator) <- true);
event-set <- event-set less the-event

function Schedule-New-Events() =
let (moving-set: set(elevator) = filter(lambda(x: elevator)

ex(v: event)
(v in *events* &
elevator-id(v) = name(x)
event-type(v) = 'floor-reached),
{ e I (e: elevator)
elevator(e) &
(state(e) = 'up or

state(e) = 'down)}))
enumerate e: elevator over moving-Eet do

add-event(clock-time(wall-clock) + 2,
'floor-reached, name(e),
0, 'dummy)

function Do-Elevator() =

' While there's still things left to do...
while -emrpty(*events*) or -empty({ e 1 (a: elevator) elevator(e) P.

(state(e) -= 'idle or
empty(schedule(e)))}) do

% Find the events happening now
C let (current-events: set(event) = filter(lambda(x: event)

11-7

event-time(x) <=
clock-time(wall-clock)
events))

%h Handle all current events
handle-events(current-events)
'Check the new states of all of the elevators
(enumerate e: elevator over

{elev I (elev: elevator) elevator(elev)}do
check-state~e)));

'% Remove the old events from the current event list
events <- setdiff(*events*, filter(lambda(x: event)

event-time(x) <=
clock-time(wall-clock)
events));

schedule-new-events 0;
'% Increment the clock
clock-time(wall-clock) <- clock-time(wall-clock) + 1;

print("Elevator states at time");
print(clock-time(wall-clock))

(enumerate e: elevator over {elev I(elev: elevator) elevator(elev)}
do

print(naxe(e));
print ("Current floor");

print(current-f loor(e));
print("Current state");
print(state(e));
print("Current schedule");
print(schedule(e));

print("Events pending at time");
print(clock-time(wall-clock));

(enumerate v: event over {ev I(ev event) event(ev) &
ev in *events* I do

print("Event time")
print(event-time(v))
print("Event type")
Print(event-tvpe(v))
print ("Elevator ");
print(elevator-id(v))
print("Floor");
print(which-f loor(v))

print("Direction");
print(direction(v));

form CREATE-ELEVATORS
add-elevator('elevator-i)&
add-elevator('elevator-2)

form CREATE-INITIAL-EVENTS
add-event(1, 'dest-pressed, 'elevator-i, 3, 'dummy) &
add-event(2, 'summons-pressed, 'dummy, 2, 'up) &
add-event(3, 'summons-pressed, 'dummy, 4, 'down) &
add-event(5, 'dest-pressed, 'elevator-2, 1, 'dummy)

11-9

Appendix I. Graphical Specification of Elevator System

This appendix contains the formal specification for the Elevator Control System

as described in (11) using the Refine-based graphical specification language developed in

Chapter 4.

I

I-i

T T

OR

H OUE-~-EVENTSI

DO -ELE VATOR

Figure 1.1. Graphical Formulation of the Do-Elevator Function

1-2

1-3,

z0

STATE PCHDM ,-SET, ¢ "

Figure 1.2. Graphical Formulation of the Fi nd- Acti ve- Elevators Function

1-3

Figure 1.3. Graphical Formulation of the Find-Current-Events Function

I-4

D~LS-RL$5(D YLOR-RACH(UES~SD ALAA-RtG UEVATOR-REET

TH'E-EVENTEJT =HE.,9VEtT IIIECVtXT MNE-EVET

--

0

Figure 1.4. Graphical Formulation of the Handle-Events Function

1.5

lIEILIVATOft

Figure 1.5. Graphical Formulation of the 11landle- Dest- Pressed Function

N AME

U
I[Ly TR-'

Figure 1.6. Graphical Formulation of the Fin d- Elevator- with-Name Function

1-7

31AIC

.w" "1W

i Itt MMVA O R | wE-t l~a,

Figure 1.7. G raphical Formulation of the Ifand]le- Floor- Reached Function

/

Figure 1.8. Graphical Formulation of the Handle-Summons-Pressed Function

1-9

1NE-fOO~ *1*THE-FLOOR

Figure 1.9. Graphical Formulation of the Schedule-Summons Function

I-10

LEA8TOR

tIHftOOR

Figue 1.0. Gaphial Frmultionof teScedul-Up-ummos Fuctio

I-liDR

ELIYATOR

010i

rK 4LOOR

IDLE

OR

' b
0

Figure 1.11. Graphical Formulation of the Find-Up-Candidates function

1-12

G(ETRO F

MFLOOK

OMENT-FLD

Figure 1.12. Graphical Formulation of the Find- Best-U p- Elevator Function

1-13

-WI - - PATORS3V

Figure 1.13. Graphical Formulation of the Find-Shortest-Schiedule Function

1-14

11-7p

OR

CADIATE

Figure 1.15. Graphical Formulation of the Find-Dn-Candidatef' 7unction

1-1 6

UVBLAOR-SET

1-10

_ ~f-L 0__ _ _ _ __ _ _

Maw

Figure 1.17. Graphical Formulation of the Handle- Alarm- Rung Function

Figure 1. 18. Graphical Formulation of the 11andle- Elevator- Reset Function

1-19

F IAI

ISO DOW _ATW ~ I PUS

-.

.4
II7Qw M u-Ipu

AIO HI"AO *-Mt

- - - --- - -- - - - - -

igr 1.19.OW Grpia omlto fteCiehS Fnto

I (I1)20

- - - - - -

- --
-- 0

Figure 1.20. Graphical Formulation of the Down-Reset Function

1-21

LIOR-ET +~

Fiue1.1 rahcl omlainofteDont-Hl unto

1-22

3f-IYOO

TATESTT

AAPM IfZ 'DOW

Figure 1.22. Graphical Formulation of the Move-to-DStop Function

1-23

P(TEGM

WILEVATOR IHE-ftEVATOR

SCHME omm-mom

Rom-SET +

*KT

nm0
WOU-CL=

F
0

+
a.ocg-?*a

RVATOR

XD-E"

STATE

IFE-60ATOR

y

Figure 1.23. Graphical Formulation of the Move-Down Function

1-24

*M&t1ATOR

Figure 1.24. Graphical Formulation of the Ad~d-Event Function

1-25

Figure 1.25. Graphical Formulation of the Down-to-Idle Function

1-26

>

-z To::O

Figure 1.26. Graphical Formulation of the Start-Up Function

1-27

T I?

Figure 1.27. Graphical Formulation of the Start-Down Function

1-28

RIEGER

RVATOR

>

FN

RDM-XT

FigureT .8 rpia omlto f TheMv-pFnto

1-2o

A

AM~ F

1-30

XTEGEF

F
-O

I Figure 1.30. Graphical Formulation of the Up- to-11alt Function

-/ - - - - - -- - - - - - - - - - - - - -

1~M6ZYATCTO/

Figure 1.31. Graphical Formulation of the Move-to-Upstop Function

1-32

F -- - - - - - - - - A

Figure 1.32. Graphical Formulation of the UpReset Function

1-33

-EMMET

Figure 1.33. Graphical Formulation of the Remove- Old- Events Function

1-34

Figure 1.34. Graphical Formulation of the Increment-Clock Function

1-35

WALL-CLOCKAL-LC

Figure 1.35. Graphical Formulation of the Display-System-State Function

1-36

------------I--L -

ELEVATORSIA1ES AT TIM

Figure 1.36. Graphical Formulation of the Display- Elevator- Header Function

1-37

1-38-

- wE - IIIA - ~ -- - - -- - - -

Figure 1.38. Graphical Formulation of the Display- Event- Header Function

1-39

0-4

SOCEMELAA

Figure 1.40. Graphical Formulation of the Add-Elevator Function

1-41

Bibliography

1. Ambler, Allen L. and Margaret M. Bernett. "Influence of Visual Technology on the
Evolution of Language Environments," IEEE Computer, 22(10):9-22 (October 1989).

2. Balzer, Robert, et al. "Software Technology in the 1900's: Using a New Paradigm,"
IEEE Computer, pages 39-45 (November 1983).

3. Berztiss, Alfs. SF Specification: A Library System. SEI Curriculum Module SEI-SM-
8-1.0, Software Engineering Institute, Carnegie Mellon University.

4. Berztiss, Alfs. SF Specification: An Elevator Controller. SEI Curriculum Module
SEI-SM-8-1.0, Software Engineering Institute, Carnegie Mellon University.

5. Berztiss, Alfs. Formal Specification of Software. SEI Curriculum Module SEI-CM-8-
1.0, Software Engineering Institute, Carnegie Mellon University, October 1987.

6. Berztiss, Alfs. "Formal Specification Methods and Visualization." In Chang, Shi-
Kuo, editor, Principles of Visual Programming Systems, pages 231-290, Englewood
Cliffs:Prentice Hall, 1990.

7. Boehm, Barry W. Software Engineering Economics. Englewood Cliffs:Prentice-Hall,
1981.

8. Boehm, Barry W. "Improving Software Productivity," IEEE Computer, 20(9):43-57
(September 1987).

9. Bustard, D. M., et al. "A Pictorial Approach to the Animation of Process Oriented
Formal Specifications," Software Engineering Journal, pages 114-118 (July 1988).

10. Davis, Alan L. and Robert M. Keller. "Data Flow Graphs," IEEE Computer, pages
26-41 (February 1982).

11. Davis, N. "Lift." in Fourth International Workshop on Software Specification and
Design, page x, Washington, D.C.:Computer Society Press of the IEEE, April 3-4
1987.

12. Elefante, Donald M. Knowledge-Based Software Assistant Technology Transfer Con-
sortium: Status Report No. 1. Technical Report, Rome Air Development Center, 12
September 1990.

13. Fischer, Charles N. and Jr. Richard J. LeBlanc. Crafting a Compiler. Menlo
Park:Benjamin Cummings, 1988.

14. Fitter, M. and T. R. G. Green. "When Do Diagrams Make Good Computer Lan-
guages?," International Journal of Man-Machine Studies, pages 235-261 (November
197).

15. Glinert, Ephraim P. "Towards Software Metrics for Visual Programming," Interna-
tional Journal of Man-Machine Studies, 30(4):425-445 (April 1989).

16. Ingalls, Dan, et al. "Fabrik: A Visual Programming Environment." In OOPSLA '88
Proceedings, pages 176-190.

BIB-1

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

n A c i'c' *¢ , t -ns Jf m s,2r t',,t~o t t t e r ore ,ruc-g the ti or rev fewl ino rictr cfl. %et - ?y sing . .t.a 5our $s.

ccec~n't 'eu~r in. 0 .~ h r.n 4 ash, rqton *4re1d a uartrs f .. V~dc(r fi.n f tOnr Io n~ 4flQ at I on ~ etterswn

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
IDecember 1990 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE DEVELOPMENT OF A GRAPHICAL NOTATION FOR THE
FORMAL SPECIFICATION OF SOFTWARE

6. AUTHOR(S)

Gene A. Place, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
WPAFB, OH 45433-6583 AFIT/GCS/ENG/9OD-IO

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (M axrum2CO wcrds)This research developed a graphical formal specification

language based on the Refine wide-spectrum language using a graph-based
iconic representation to present formal specifications in a format that is
much easier to create and manipulate than the equivalent textual formal
specifications. The development of the graphical formal specification
language proceeded in two steps: the Refine language was first decomposed
into its primitive data types and operations, then iconic representations were
developed for each of the primitive data types and operations that were
identified. In addition to the development of a graphical formal specification
language, this research also proposed a number of heuristics to convert
existing graphical program design notations, such as data flow diagrams,
state transition diagrams, and entity relationship diagrams, into graphical
formal specification syntax. The architecture for a graphical formal
specification environment wns proposed in this research that .. ,4d support
the creation and revision of formal specifications using only their graphical
representations.

14. SUBJECT TERMS 15. NUMBER OF PAGES
259

software engineering, programming languages, specifications, 16. PRICE CODE
graphics, mathematical logic

17. SECU;RITY Q..5FCAS CJ 18 SECJAITY CLAf FICATC ! 19 Lc I f 1IA C :F S AT
OF "EPORT 0F THIS PAGE OF 13STR.CT
Unclassified Unclassified I Unclassified UL

• I, _-_-_'-_ _._ _
" "

_ _ __r - : ., .- '

